Synchronization in duet performance:
Testing the two-person phase error correction model

Dirk Vorberg
Institut für Psychologie
Technische Universität Braunschweig
Braunschweig, Germany

RPPW2005, Alden Biesen
Overview

1. How do ensemble players manage to remain synchronized?
2. Sensorimotor synchronization, tapping along perfect metronome.
 → Synchronization is achieved by linear phase error correction.
3. Extend model to duet performance.
 → Major advantage: Use computer to simulate one of the duet partners.
4. Experimental study.
 → Preliminary data.
Definition of interresponse intervals and synchronization errors

task: tap in close synchrony with the metronome

synchronization errors ("asynchronies")

metronome

overt responses

interresponse intervals
The phase-correction model

(Vorberg & Wing, 1994, 1996; Vorberg & Schulze, 2002; Schulze & Vorberg, 2003)
The two-level timing model augmented by phase error correction

1. basic assumption:
 \[T_n^* = T_n + (1 - \alpha)A_n \]

1. testable consequence:
 \[A_{n+1} = (1 - \alpha)A_n + (T_n + M_{n+1} - M_n) - C_n \]
Model predictions I: response to experimental perturbations
Results (Antje Fuchs, 2003)
Results (Antje Fuchs, 2003)
Model predictions II:
serial or auto-covariance function (acvf)

serial variance = acvf at lag 0 = acvf(0)

$A_1 \ A_2 \ A_3 \ \ldots \ A_{i-1} \ A_i \ A_{i+1} \ \ldots \ \ldots \ A_{n-1} \ A_n$
Auto-covariance function (acvf)

lag 1 auto-covariance = acvf(1)
Auto-covariance function (acvf)

lag 2 auto-covariance = acvf(2)

auto-correlation function $acf(lag) = \frac{acvf(lag)}{acvf(0)}$
Predicted asynchrony acf (as a function of lag)

$0 < \alpha < 1$

$1 < \alpha < 2$

Note:
Synchronization performance is *unstable* if α outside this range.
Basic assumption: Each player serves as metronome for the other one.

Parameters:
Player A (subject)
- timekeeper variance \(\sigma_T^2 \)
- motor variance \(\sigma_M^2 \)
- error correction \(\alpha \)

Player B (metronome)
- timekeeper variance \(\sigma_U^2 \)
- motor variance \(\sigma_N^2 \)
- error correction \(\beta \)
Two-person phase synchronization model: Main result

Predicted 2-person asynchrony acvf

\[
\text{var}(A) = \\
\left[(\sigma_T^2 + \sigma_U^2) + 2(\alpha + \beta)(\sigma_M^2 + \sigma_N^2) \right] \\
/ \left[1 - (1 - (\alpha + \beta))^2 \right]
\]

\[
\text{cov}(A_n, A_{n+k}) = \\
\left[1 - (\alpha + \beta) \right]^{k-1} \left[\text{var}(A) \left(1 - (\alpha + \beta) \right) - (\sigma_M^2 + \sigma_N^2) \right]
\]

Predicted 1-person asynchrony acvf

\[
\text{var}(A) = \\
\left[(\sigma_T^2) + 2(\alpha)(\sigma_M^2) \right] \\
/ \left[1 - (1 - (\alpha))^2 \right]
\]

\[
\text{cov}(A_n, A_{n+k}) = \\
\left[1 - (\alpha) \right]^{k-1} \left[\text{var}(A) \left(1 - (\alpha) \right) - (\sigma_M^2) \right]
\]
Predicted asynchrony acf for two-person model:

1. Synchronization performance is unstable if $\alpha + \beta$ outside this range.
2. Predictions:
 - Stable but oscillatory acf for β positive.
 - Unstable synchronization for β negative.
Experiment: Conditions

1. tempo
 - IOI=450 ms / 300 ms

2. meter
 - duple / triple / quadruple

3. metronome gain factor
 - $\beta=0$
 - $\beta=.4 / .8$
 - $\beta=-.25 / -.50$

4. seven subjects
 - 6 one hour sessions
 - 18 sequences/condition
Results

1. Exemplary time series after six hours of practice
 - asynchronies
 - interresponse intervals, IRI (subject)
 - interonset intervals, IOI (metronome)
2. Auto-correlation functions, acf
subject an: asynchronies
(x-axis: tap no. 1 – 48; y-axis: tap-metronome asynchrony in ms)

$\beta = 0$ $\beta = 0.4$ $\beta = 0.8$ $\beta = 0.25$ $\beta = 0.50$

slow

fast

50 ms
subject an: IRIs (top) and IOIs (bottom)
(x-axis: tap no. 1 – 48; y-axis: deviation from nominal IOI, in ms)

\[\beta = 0, \beta = 0.4, \beta = 0.8, \beta = -0.25, \beta = -0.50 \]
subject an: acf.s for slow (top) and fast tempi (bottom)
(x-axis: lag 0 to 6; y-axis: correlation size)

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>duple</th>
<th>triple</th>
<th>quadruple</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
subject bv: asynchronies slow (top) and fast (bottom)

$\beta = 0$ $\beta = 0.4$ $\beta = 0.6$ $\beta = 0.25$ $\beta = 0.50$
subject bv: IRIs (top) and IOIs (bottom)

\[\beta = 0 \quad \beta = .4 \quad \beta = .8 \quad \beta = -.25 \quad \beta = -.50 \]
subject bv: acf.s for slow (top) and fast (bottom) tempi

β = 0 β = 0.4 β = 0.8 β = -0.25 β = -0.50

duple triple quadruple
subject eh: asynchronies, slow (top) and fast (bottom)

\[\beta = 0 \quad \beta = 0.4 \quad \beta = 0.8 \quad \beta = -0.25 \quad \beta = -0.50 \]
subject eh: IRIs (top) and IOIs (bottom)

\[\beta = 0 \quad \beta = .4 \quad \beta = .8 \quad \beta = -.25 \quad \beta = -.50 \]
subject eh: acfs for slow (top) and fast (bottom) tempi

\[\beta = 0 \quad \beta = 0.4 \quad \beta = 0.8 \quad \beta = -0.25 \quad \beta = -0.50 \]

duple triple quadruple
Empirical asynchrony acf.s (all subjects)

\(\beta = 0 \), \(\beta = 0.4 \), \(\beta = 0.8 \), \(\beta = -0.25 \), \(\beta = -0.50 \)

duple
triple
quadruple
Empirical asynchrony acvf.s (average across subjects)
(x-axis: lag 0 to 6; y-axis: autocovariance at lag k)

β = 0

β = 0.4

β = 0.8

β = -0.25

β = -0.50

duple
triple
quadruple
Summary and conclusions

1. Two-person model is in qualitative agreement with observations.
 → As predicted, acf becomes oscillatory as metronome gain β increases.
 → For negative gain β, performance is unstable for most subjects.
2. Subjects can to adapt their phase-correction strategy to that of the duet partner.
3. **Next step: Quantitative model fit.**
4. Model-based experimental paradigm is a promising tool for studying duet synchronization. The model is easily extended to musically more challenging conditions.