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ABSTRACT 
 
This project documents some initial results of our investigation 
of the applicability of adaptation techniques and procedures for 
use in speech synthesis systems – a process whereby a well-
trained synthesizer can be transformed to sound "more like" a 
small target recording set.  If we can ensure that the target data 
set is representative not of an individual speaker, but of a 
category of accented speech, adaptation of the Synthesis system 
could be expressed as an iterative procedure where the System 
learns to modify both its spoken output and linguistic 
representation to more closely resemble the alternate accent.   
We summarize the proposed algorithm and present results 
estimating the rate of pronunciation-learning and generalization 
possible with this technique, specifically as regards the choice of 
an appropriately-sized target speech database for training. 

 

1. INTRODUCTION 
 
One of the defining characteristics of concatenative speech 
systems is the unavoidably close tie between the output voice of 
the system and that of the source speaker from which the 
training recordings were made – in speaker quality, voice 
characteristics, gender, and even spoken genre.   There is a 
secondary relationship between the social and regional 
characteristics of the source speaker, such as accent and dialect, 
and the supplementary linguistic knowledge used in the creation 
of the synthesis framework – phone unit inventories, lexicons, 
pronunciation rules, etc.  The cost and effort in recording, 
labeling, and processing the large speech databases and 
supplementary linguistic and lexical data limits the ease with 
which a variety of voices can be quickly constructed.   
Inevitably, this leads to a small set of largely “culturally 
centered”, neutrally-accented voices across the set of languages 
deemed “commercially viable” for development. 
 Adaptation in Speech Recognition Systems is a procedure 
whereby a general-purpose acoustic model trained on a large and 
varied set of data is transformed to provide better performance 
on a specific voice through a much smaller target voice training 
set.  Based upon this data, the values of parameters, nodes, 
weights, or other coefficients representing the acoustic model 
are shifted “towards” the new information such that the system 
should exhibit improved performance on data resembling the 
new training data even though such data was not included in its 
initial training procedure.  Such adaptation is commonly used to 
personalize commercial recognition systems, transforming 
speaker-independent systems to improved speaker-dependent 
systems for individual desktop users.    Other uses include the 

customization of acoustic models for a particular group of users 
(such as users from the United States of American with a 
Southern Accent, or non-native Japanese speakers) [13,15] 
 This project documents some initial results of our 
investigation of the applicability of adaptation techniques and 
procedures for use in speech synthesis systems – specifically, a 
dynamic process whereby a well-trained synthesizer can be 
transformed to sound "more like" a small target recording set.  If 
we can ensure that the target data set is representative not of an 
individual speaker, but of a category of accented speech, 
adaptation of the Synthesis system could be expressed as an 
iterative process where the System learns to modify both its 
spoken output and linguistic representation to more closely 
resemble the alternate accent.   
 For our purposes, we treat accent as the variation across a 
set of speakers of: 

the phonetic inventory which comprises the basic building 
blocks with which things are pronounced;  
a set of pronunciation rules or examples which dictate how 
the phonetic units are put together to assign a pronunciation 
to an orthographic form, and subsequently speak the desired 
text, and  
a collection of conventionalized stress and intonational 
patterns which help provide structure and syntactic / 
semantic context to the overall produced utterances.   

  
Adaptation in Speech Synthesis System Overview 
 
� Generate synthesized utterance from transcript using current 

synthesizer (letter-to-sound rules, phones, speech database, 
etc.) 

� Elicit target recording of the same utterance from a suitable 
speaker. 

� Compare target recording to generated source form to 
determine how the two pronunciations differ. 

� Re-organize the phone units and speech unit selection 
process to incorporate differences and info from target 
recording units. 

� Modify the lexical entries and letter-to-sound rules, and 
speech database of the existing synthesizer to produce output 
that more closely resembles the target utterance. 

 
We have separated the task of synthetic Voice Adaptation into 
two distinct learning procedures.  Broadly speaking, given a 
fully trained synthetic voice and a set of recorded target 
utterances, the system first learns the differences between its 
current speech production and that of the target speech, and then 
modifies its voice production based on what it has learned in 
order to sound more like the target voice.  Simultaneous 
retraining of both phonetic representations and the speech unit 



database can help avoid the problem of a mismatch between 
suggested and realized pronunciation caused by introducing a 
new database of differently accented speech into an existing 
system. 
 The primary benefits of dynamic (or even off-line) 
adaptation of a Speech Synthesis system include the reduction in 
time, effort, data requirements to build a new voice, and the 
retained use of declarative and linguistic knowledge (tagging, 
POS, etc.) already built into an existing system. 
 In this study, we deal specifically with the representation 
of pronunciation within the system in terms of the re-assessment 
(and alteration) of the source phone set for the target data, and 
similarly the reorganization and modification of the systems 
pronunciation rules based upon evidence in the target.  We have 
separated this learning process from questions of the actual unit 
database reorganization and the resultant changes in the output 
of the concatenative speech system, as the phonetic 
representation of the desired utterance can be modularized apart 
from the process of waveform generation.  Likely solutions to 
integrating or simulating the target phonetic units into or from 
the source unit database come from studies of voice imitation 
and mimicry [5,17], and voice morphing [8], and will be 
addressed in a later study. 
 

2. RELATED WORK 
 
Although the goal of voice adaptation follows closely with that 
of work in recognition systems, our implementation is more 
directly inspired by efforts in developing multilingual and cross-
lingual acoustic models for speech recognizers [2,9,14,16] and 
targeted model adaptation for non-native accented speech 
[13,15].  Instead of focusing on speaker variation due to 
individual differences and voice quality, these studies primarily 
consider a systematic and generalized difference in phonetic 
inventory between a set of two languages, employing various 
means to determine an appropriate mapping between their two 
phone-sets to determine how acoustic models and trained data 
can be best shared or borrowed between them.  Uebler [14] 
roughly classifies these methods as ranging from a direct or 
“na(t)ive” borrowing of all or a subset of an existing phonetic 
inventory (as one might do when attempting foreign terms from 
a phrase book), through a “phonetic approach” using external 
knowledge to map phonemes similar in characteristics such as 
manner and place of articulation and nasality, to purely data- 
driven approaches, often employing confusion matrices of cross-
model acoustic similarity [2].  Predictably [9,14], greater 
reliance on observed data results in improved accuracy of the 
mapped model; but the specific language pairings and their 
overall phonetic similarity provide the greatest variation in 
results.  
 Typically these studies have focused exclusively on 
acoustic mapping, acknowledging, as in [2], to “have assumed 
that language models, pronunciations, and appropriate acoustic 
processing are available for the target language, and that only 
transcribed acoustic training is in short supply.”  We find, 
however, that those languages with limited speech data also pose 
great difficulty for obtaining quality pronunciation lexicons and 
rule-sets, and that the logical extension of data-driven phoneme 
mapping is to additionally allow the system to dynamically 
target its letter-to-sound rules, in effect “learning” pronunciation 
rules for the new language, or accent.  Most significantly, this 

addition accounts for the fact that much pronunciation variation 
across accents and languages isn’t purely a global re-mapping of 
sounds, but instead is highly context-dependent [7]. 
 Automatic learning of letter-to-sound rules has been 
copiously investigated [1,3,4,12,18], primarily focused on the 
generalization of such rules from an provided lexicon [1,3] but 
also addressing augmentation of a recognition dictionary with 
ambiguous or alternate pronunciation variants to increase 
recognition [12]. This need is different from synthesis, which 
necessitates that each word reduce to a single, distinct 
pronunciation.  Contextual rules have long been a favored means 
of generating pronunciations for text-to-speech systems – they 
are easily hand-edited, robust to previously unseen words, and 
provide varying levels of description.  This allows us to directly 
modify the system output at a very high level by modifying or 
re-ordering rules, without requiring a full batch re-training run.  
The typical criticism of rule-based approaches – that they “fail 
miserably” when trained on conflicting examples indicating 
alternate pronunciations for the same orthographic form [3], we 
here use to our advantage, for the very point of conflict between 
predicted and observed data indicates to us exactly which rule 
must be changed. 
 In addition to the aforementioned lexical augmentation, 
phone set redefinition [10,11] provides an additional means of 
increasing the performance of a recognition system by tuning the 
acoustic representation to more closely resemble a set of training 
data.  Starting with a seed set of phone units, acoustic data is 
labeled and re-clustered in an iterative maximum likelihood 
process, splitting or merging phonetic units when necessary to 
achieve an optimal balance between the joint likelihood of the 
training data and the acoustic model. 
 

3. DATA AND METHOD 
 
For our source data, we have trained a concatenative unit- 
selection synthesizer on a male standard American English 
speaker based on a labeled recording of the TIMIT speech 
corpus.  This initial system uses a set of pronunciations trained 
from the CMUDICT using the DARPAbet phone inventory and 
notation. 

Our target data consists of 10 minutes of read speech from 
three males speakers of Cambridge-Regional British English, 
selected from from the IViE (English Intonation in the British 
Isles)[5] speech corpus/database complete with lexical (but not 
phonetic) transcription.  We have used a lexicon derived from 
the OALD for the purpose of evaluating the results of the 
pronunciation modification, but it has not played any part in the 
training procedure. 

Following [1,3] we have trained our pronunciation rules 
into a decision tree from the initial CMUDICT lexicon.  This 
tree implements pronunciation generation as an ordered set of 
binary decisions based upon orthographic and lexical context, 
which determine an appropriate phone selection (or alternately 
multiple or null selections) for each orthographic character.   

 Converting the lexicon to such a tree allows any changes to 
pronunciation rules to be reduced to one of the following four 
procedures: 
� 
� 
� 
� 

Adding to the tree. 
Pruning the tree. 
Modifying a node (or nodes) in the tree. 
Doing nothing. 



This process has the advantage of storing the results of multiple 
iterative changes to our pronunciation rules implicitly within the 
pronunciation tree itself rather than requiring us to store and 
process a separate history of all data seen and changes made.  As 
repeated evidence is seen of a pronunciation difference between 
our source and target speech (that is, as we observe a 
pronunciation is a generalized form rather than an irregularity or 
exception) characteristics of this pronunciation form propagate 
up the tree from a leaf node to an internal branching level.  

For each of the utterances in our target set, we generate a 
corresponding synthesized form using our trained synthesizer, 
which are used to generate a forced time-alignment and phonetic 
labeling for the target speech.  We then perform what is 
essentially a low-dimensional k-means vector quantization of 
phonetically labeled, segmented source data followed by a 
classification of target units within this space.   In future studies, 
this procedure will be replaced with a phone-recognizer more 
robust to individual speaker recognition; the current approach 
was chosen specifically to allow reasonable performance given 
the limits on size and diversity of training data inherent in 
concatentive synthesis databases. 

 
Comparison of Source and Target Phonetic Composition 
 
� Generate synthesized utterance from transcript using 

current synthesizer (letter-to-sound rules, phones, etc.) 
� Using the synthesized utterance as a guide, segment and 

phonetically label the target utterances into phone units. 
� Plot spectral characteristics of source phone unit database 

in an n-dimensional clustering space, computing centroid(s) 
and deviations across each phonetic label in the current 
inventory. 

� For each observed phone in the target speech: 
            Plot its spectral characteristics in the clustering space 
            Determine a confidence rating for all possible labels 
            If the label of highest confidence is the existing label 

 Do nothing 
           Else find the phonetic label with the highest score 
                If it exceeds a given threshold,  

     Re-label the unit as the phone label with best score 
Else if no confidence scores fall within threshold 

        Propose a new phone label “x” for this phone 
Proceed to modify pronunciation rules 

 
All phone changes with sufficiently high confidence are 
forwarded on to the rule modification process; which begins by 
evaluating the orthographic context of the specified phone 
within the current pronunciation tree.  Because the initial 
pronunciation label assigned by the tree was modified in the 
preceding comparison procedure, we know that the corrected 
classification will be different from that predicted by the tree.  
On this first pass, we change the leaf node of the tree to reflect 
the predicted phone value (which is either an alternate existing 
phone unit, or a newly proposed one). 
 As mentioned, we have set up the rules into a classification 
tree, ordered downward from most significant to least significant 
context, ensuring that the each decision node in the tree encodes 
the minimum disambiguating context to separate competing 
phonetic interpretations.  Thus, unless a particular orthographic 
context is utterly unique (which can be protected against by 
limiting over-fitting of the rule set during training), each change 

to a leaf node will impact not one but an entire set of words 
sharing the relevant context – yet, because we are low in the 
tree, this context will still be partially constrained. 
 As phoneme variation across accents is contextual but 
systematic, there is a strong possibility that the relevant leaf-
node changes may cluster in specific areas of the tree, and 
primarily in the vowel space.  In the event that the after they are 
changed, multiple leaf nodes from a single parent result in an 
identical phoneme classification, these paths can be pruned and 
the tree shortened.  Pruning, or node removal, can be interpreted 
as generalization of the pronunciation change.  The rate of 
generalization can be increased, if desired, by storing the 
predicted information gain for each branch during the creation of 
the tree, increasing this proportionally above each leaf changed 
– on the assumption that newer information is more relevant – 
and pruning lower nodes once the difference in likelihood of 
following each path reaches a determined threshold. 
 Node addition, or extension, is opposite of generalization 
and pruning – rather than changing or supporting an existing 
rule, it signifies that the change is an exception to the rule.  In 
our implementation, node extension only occurs when the 
suggested change would reverse or overwrite a recently 
modified node. Such an occurrence would suggest that the given 
context – within the new accent – proposes multiple phone unit 
classifications and thus is not, in fact, minimally descriptive.  
The context is thus extended by inserting a new decision point 
sufficient to distinguish the two instances.  Although not used 
here, an external information source such as a tagger of proper 
names or foreign terms might also be used to put forward a 
“suggestion” that certain segments be considered as likely rule 
exceptions, forcing a rule split when they are entered into the 
tree, whether or not the local node has been  recently accessed. 
 

4. RESULTS AND ANALYSIS 
 
Our initial evaluation metrics of the system concern the 
generalization rate and ability of the rule modification module of 
the system.  This is essential to determining the necessary and 
sufficient amount of training data to achieve noticeable change 
in the output pronunciations of the system, as well as in 
choosing appropriate confidence threshold for initiating changes 
to the letter-to-sound rules. 
 The target training databases consists of three speakers 
reading, consisting of 2995 labeled phones per speaker (or a 
sum-total of 8985), distributed as follows 
 
     52  aa      87  ae      55  ah      43   ao     19   aw    155  ax 
     52  ay      42  b       6   ch     188  d      97   dh     76    eh 
    106 er      32  ey      47  f      45   g      63   hh    148   ih 
     92  iy      13  jh      38  k     147  l      72   m     197   n 
     18  ng      34  ow      5   oy      46   p      117 r     124   s 
     13  sh     141 t       7   th      11   uh     42   uw     31   v 

76  w      29  y      85  z      266 sil 
 

Objectively speaking, this is very sparse data.  In contrast, the 
trained pronunciation classification tree has 25,014 rules.  If our 
“phonetic difference” threshold were set so low that every non-
silence phoneme in the target speech triggered a unique rule 
change, this would result in 32.7% of the rules being modified. 
Even only considering the vowels (the most probable source of 
accent variation) if every instance in the target set forced a rule 
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Figure 1: Accumulated Change in Pronunciation 
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5. CONCLUSIONS 
 
We have put forward a computationally efficient and real-time 
capable method for redefining the phonetic output of a pre-
trained speech synthesis system, allowing large scale change of 
phonetic rules with a limited set of training data, while still 
providing overall gating parameters and mechanisms to prevent 
over-generalization.  Unlike such procedures as phoneme re-
mapping, our procedure is data-driven and simultaneously 
updates both pronunciation rules and phonetic inventory to 
ensure a proper and accurate relation between the linguistically 
represented and acoustically generated output of the system. 
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