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Speaker Identification
Using Instantaneous Frequencies

Marco Grimaldi, Fred Cummins

Abstract—This work presents an experimental evaluation of
different features for use in speaker identification. The features
are tested using speech data provided by the CHAINS corpus, in
a closed set speaker identification task. The main objective of the
paper is to present a novel parametrization of speech that is based
on the AM-FM representation of the speech signal and to assess
the utility of these features in the context of speaker identification.
In order to explore the extent to which different instantaneous
frequencies due to the presence of formants and harmonics in the
speech signal may predict a speaker’s identity, this work evaluates
three different decompositions of the speech signal within the
same AM-FM framework: a first setup has been used previously
for formant tracking; a second setup is designed to enhance
familiar resonances below 4000 Hz, and a third setup is designed
to approximate the bandwidth scaling of the filters conventionally
used in the extraction of MFCCs. From each of the proposed
setups, parameters are extracted and used in a closed-set text-
independent speaker identification task. The performance of the
new featural representation is compared with results obtained
adopting MFCC and RASTA-PLP features in the context of a
generic Gaussian mixture model (GMM) classification system.
In evaluating the novel features, we look selectively at in-

formation for speaker identification contained in the frequency
range 0 Hz–4000 Hz and 4000 Hz–8000 Hz, as the instanta-
neous frequencies revealed by the AM-FM approach suggest
the presence of structures not well known from conventional
spectrographic analyses. Accuracy results obtained using the
new parametrization perform as well as conventional MFCC
parameters within the same reference system, when tested and
trained on modally voiced speech which is mismatched in both
channel and style. When the testing material is whispered speech,
the new parameters provide better results than any of the other
features tested, although they remain far from ideal in this
limiting case.

I. INTRODUCTION
Humans are fairly good at identifying speakers based on

their voices alone. The large amount of work in the field
of speaker recognition over the previous 30 years has been
predicated on the belief that automated systems ought to be
able to do as well, or even better, than humans. Yet we still
lack a solid understanding of those characteristics of speech
that index an utterance as originating in one speaker rather
than another. The introduction of the idea of a voice print by
Kersta [21] led to a common perception that the now familiar
spectrogram could function in much the same way as a finger-
print. Phoneticians are well aware, however, of the inherent
variability in the speech signal, such that no two utterances
are ever identical. Moreover, much of what we know about
speech comes from an intellectual focus upon features which
make linguistic communication possible, which necessarily
ignores the idiosyncratic properties of speech that differentiate
linguistically similar utterances. The goal of work in speaker
recognition, on the other hand, is to find measurable quantities

that minimize within-speaker variability and simultaneously
maximize between-speaker variability [1], [18], [38].
The general area of speaker recognition encompasses two

fundamental tasks: speaker identification and speaker veri-
fication [3], [7], [35]. Speaker identification is the task of
assigning an unknown voice to one of the speakers known
by the system: it is assumed that the voice must come from
a fixed set of speakers. Thus, the system must solve a n-
class classification problem and the task is often referred to as
closed-set identification. On the other hand, speaker verifica-
tion refers to the case of open-set identification: it is generally
assumed that the unknown voice may come from an impostor.
Regardless of the specific task at hand, it is common practice
to adopt a probabilistic approach that predicts the likelihood
that a given speech sample belongs to a given speaker [3], [7],
[27], [34], [36], [35]. The base system for speaker recognition
is usually composed of a speech parametrization module and
a statistical modeling module [3] which are responsible for
the production of a machine readable parametrization of the
speech samples and the computation of a statistical model
from the parameters. The main difference between speaker
identification and speaker verification is that in the first case
the system provides one model for each speaker, while, in the
second case, the system provides a total of two models: one for
the hypothesized speaker and one representing the hypothesis
that the speech sample comes from some other speaker—the
background model.
The base model for speech parametrization (the front-end

of the recognition system) usually adopted is the source-filter
model, which leads to the extraction of parameters such as
LPC, MFCC, PLP, etc. (e.g.: [8], [17], [24], [27], [34], [36],
[35]). While these parameters have proved highly successful
in robust speech recognition, the amplitude spectrum typically
employed is highly sensitive to changes in speaking conditions
such as changing channels and speaking style [6], [35], [38].
This is well illustrated by the so-called great divide in the
KING corpus [15]. Minor changes in the recording setup of the
corpus introduced differences in the spectral slope of the data,
badly affecting the system performance. To compensate for the
shortcomings of standard speech parametrization, researchers
often opt to train the decision algorithm using a mix of
samples from different sessions/setups [15] and implementing
different forms of channel normalization such as cepstral mean
normalization or RASTA processing [3], [17], [34], [36].
While these methodologies have potential in some speaker
verification scenarios (where it is possible to perform multi-
session recordings), the same is not true in areas where
researchers and investigators do not have full control of the
devices used for recording, or of the recording environment,
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or the amount of recorded material. Moreover, many research
studies have stressed the fact that further difficulties may arise
due to (possibly volitional) changes in speaking register and
speaking style [1], [6], [18], [38].
In the context of text-independent speaker recognition,

where there is no prior knowledge of what the speaker will
say, one of the most successful methods in modeling human
identity from speech has been the Gaussian Mixture Model
(GMM) [3]. The GMM is usually viewed as a hybrid approach
between parametric and nonparametric density models: like a
parametric model, it has structure and parameters that control
the behavior of the density in known ways, but without the
constraint that the data must follow a specific distribution
[3], [34], [36]. In the literature, other approaches have been
proposed to model human identity from speech (e.g.: artifi-
cial neural networks and support vector machines, [8], [40],
[41], [42]), demonstrating that other techniques may provide
comparable performance.
The main objective of this work is an experimental compari-

son of different parametrization of speech for speaker recogni-
tion. In order to reduce the degrees of freedom of the problem,
we focus on the performance that a generic GMM classifica-
tion system provides in closed-set identification (speaker iden-
tification, hereafter SI). The closed-set scenario is preferred
to the open-set scenario (speaker verification), because of the
open nature of the latter. As argued by Bimbot et. al [3, p.
435-436], when building a background model for verification,
speech should be selected such that it reflects the expected
alternative speech to be encountered during the verification
procedure. This applies to the type and quality of speech as
well as the composition of the set of speakers. Moreover,
other than general guidelines and experimentation, there is no
objective measure to determine the optimal number of speakers
or amount of speech to use in training a background model
[3]. On the other hand, by focusing on closed-set identification,
differences in the performance of the reference classification
system may be directly related to a better separation of the
speaker in the feature space, or lack of it. Furthermore, given
that both speaker identification and speaker verification rely
on the same base techniques, improvements in one technology
may also provide improvements in the other.
The speech samples used in this work are extracted from

the CHAINS corpus [9]. The CHAINS corpus is a novel speech
corpus designed to facilitate research into the characterization
of individual speakers. It offers speech samples obtained in
two different recording sessions with the unique possibility
of studying the effect of non-modal voice (whispering) in SI.
The first recording session used a very high quality recording
environment and apparatus, while the second recording session
is more typical of data recorded in a quiet office using a near-
field microphone. Across the two sessions, each speaker pro-
vides recordings in six qualitatively different speaking styles.
In this work, we make use of speech samples selected across
the two recording sessions, training and testing Gaussian
mixture models (GMMs) in mismatched channel and speaking
style conditions. Speech samples extracted from the first,
high-fidelity, recording session are used to train the induction
algorithm, while material extracted from the second, lower

quality recording session is used in testing the algorithm. The
training material consists of utterances recorded from subjects
reading a prepared text aloud, while the test material consists
of speech samples obtained from subjects who willfully alter
their speaking style. A first set of experiments uses test
material in which the prepared text is read aloud at a fast
rate; a second set of experiments uses test material in which
the prepared text is read in a whisper. While our main focus is
on the evaluation of a novel parametrization of speech for the
purposes of SI, this work also attempts to address outstanding
challenges in SI by making use of recordings in which the
speakers intentionally modify their voices [37] and to examine
the effect of non-modal voice (whispering) on the performance
of the SI system.
This work introduces a new set of descriptors based on

the AM-FM representation of the speech signal. This new
signal characterization is obtained by extending the use of the
pyknogram of the signal [30]. It seeks to exploit the rich set
of time-varying frequencies inherent in the speech signal, and
to encode them as parameters for speaker identification. Well-
known frequency components of voice include both formant
resonances and harmonics of the fundamental frequency. Other
frequency components of unknown origin (bony structures,
idiosyncratic anatomy) may also prove useful in identifying
individuals. We therefore explore three alternative ways of
parametrizing speech within a single AM-FM framework: the
first setup we employ has been used in the literature for
formant tracking [30]; a second setup was found, during pre-
liminary tests, to enhance familiar resonances below 4000 Hz
and a third setup is designed to mimic the frequency scaling
of the filters adopted in the extraction of MFCC coefficients.
The recognition rates obtained using the three AM-FM se-
tups are compared with the results obtained adopting MFCC
and RASTA-PLP parameterizations within the same generic
Gaussian mixture model (GMM) classification system.

II. THE AM-FM MODEL

Popular speech processing techniques are conventionally
based on spectral analysis, using some variant of linear predic-
tion or cepstral analysis [2], [13], [23]. These parametrizations
are commonly used as a front-end for both speech recognition
and for speaker identification/verification systems and are
based (in one way or another) on the source-filter model of
speech production [32], [33]. The source-filter model assumes
that the sound source in modally voiced speech is localized in
the larynx, while the vocal tract acts as a convolution filter
for the emitted sound. Although this approach has led to
great advances in the last 30 years, it is known to neglect
some structure present in the speech signal [12]. Examples
of phenomena not well-captured by the source-filter model
include unstable airflow, turbulence, and non-linearities arising
from oscillators with time-varying masses [12], [25], [39].
In recent years, new ways of modeling and characterizing

speech have been proposed in a number of different works
(e.g.: [10], [11], [12], [19], [28], [29], [31]). Of particular
interest here is AM-FM signal modeling. AM-FM modeling
is a technique used especially by electrical engineers in the
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context of frequency modulated signals, such as FM radio
signals. This technique has been applied to speech signal
analysis, with varying degrees of success, in areas such as
formant tracking [30], speech synthesis [22], speech recog-
nition [10], [11], [28], [29], [31] and speaker identification
[19]. The AM-FM model is generally used to decompose a
speech signal into decorrelated band pass channels, each of
which is characterized in terms of its envelope (instantaneous
amplitude) and phase (instantaneous frequency).
In order to characterize a (single) instantaneous frequency

for a real-valued signal, an analytic signal is first constructed: it
is a transformation of the real signal into the complex domain
and it is adopted because it permits the characterization of the
real input in terms of instantaneous amplitude and frequency
[14], [33]. More formally: given a real input signal s(t), its
analytic signal sa(t) can be computed as

sa(t) = s(t) + j · ŝ(t) (1)

where ŝ(t) is the Hilbert Transform of s(t). The analytic signal
sa(t) can be decomposed as follows:

sa(t) = a(t) · ejφ(t) (2)

where a(t) is the instantaneous amplitude (envelope) of the
analytic signal, while φ(t) is its phase. The instantaneous
frequency (IF) f(t) of the analytic signal can be computed
directly from the phase:

f(t) =
1

2π
·
dφ(t)

dt
. (3)

The importance of the instantaneous frequency (IF) stems
from the fact that speech is a nonstationary signal with spectral
characteristics that vary with time.
When a person speaks, the supra-glottal vocal tract modifies

the sound wave originating in the vocal cords in very specific
ways. Depending on the message embodied in the speech itself
and on the anatomy of the vocal cavities of the speaker, the
final result of the act of speaking is a very complex pres-
sure signal containing many different forms of information.
Different parts of the skull (soft parts and hard parts of the
vocal tract) vibrate under the influence of a common energy
generator (the lungs) and the consequent airflow across the
glottis. The human ability to change the form of some parts
of the vocal tract (e.g. the cross section of the larynx, the size
of the mouth cavity) gives rise to the familiar dynamic formant
structure found in speech. Changing the stiffness of the vocal
chords causes changes in pitch. The presence of diseases (e.g.,
colds) in a speaker has the effect of enhancing the role played
in speech production by some structures of the vocal tract
(e.g., the nasal cavity). A speaker may voluntarily change some
of his speaking habits in order to achieve a predefined goal,
e.g. mimicry or disguise [37]. A speaker may involuntarily
change some properties of his vocal tract under the influence
of a particular state of mind, e.g. anger, stress, sadness. All
these intrinsic factors in speech production affect the physical
properties of the speech waveform: they collectively ensure
that speech is a signal with a rich set of multi-component
time-varying frequencies.

In the context of AM-FM signal modelling, the concept of a
single-valued instantaneous frequency for a multi-component
signal becomes meaningless without breaking the signal down
into its components. As discussed in [4], the decomposition
of a signal is not unique if its frequency components coincide
at some points in the time-frequency plane. This is the case
for speech, e.g.: formants are well known to have points in
the time-frequency plane where they appear to join or split.
In this case, the decomposition is heuristic in nature and its
optimal form will depend on the specific application. [4].

An example of AM-FM signal decomposition for speech
analysis was proposed by Potamianos et al. [30] in the context
of formant tracking. The authors proposed a new way of
representing the speech signal through the computation of the
pyknogram, which is a density plot of the frequencies present
in the input signal. The pyknogram is computed by the authors
using a uniformly spaced Gabor filterbank and a demodulation
schema based on the Teager energy-tracking operator [20],
[25]. A single instantaneous frequency is computed for each
filter output and each frame of speech, yielding a 2-D array of
instantaneous frequencies. Potamianos et al. demonstrate that
the AM-FM approach can overcome some of the limitations
of the classic source-filter model and greatly help the difficult
task of speech formant tracking.

Jankowski et al. [19] adopted the AM-FM model to char-
acterize some fine structures of the human voice for the pur-
pose of speaker identification. The authors proposed a mixed
LPC/AM-FM approach to identify, select and parametrize the
first three formants of human speech. Their work demonstrated
that this procedure may be beneficial in speaker identification:
formant AM-FM parameters substantially improve identifica-
tion rates on female speakers [19]. A more thorough compar-
ison of AM-FM representations in an SI context has hitherto
remained outstanding.

In this work, we extend the use of the pyknogram and
the decomposition of the multi-frequency component speech
signal to the problem of speaker identification. The approach
proposed here seeks to identify which instantaneous frequen-
cies are present in the speech signal and to encode them as
parameters for speaker identification. Given the non-unique
decomposition of a multi-frequency component signal and
the lack of a theory justifying the adoption of any specific
approximation to extract parameters which are invariant in the
context of SI, we perform speech parametrization by applying
three different decomposition algorithms for the same input
signals. Within the same approach (AM-FM), it is possible to
vary the way in which the speech pyknogram is computed in
order to focus on different frequencies in the signal: structures
due to the presence of resonators in the upper vocal tract
(formants) and fine structures related to the presence of quasi-
harmonic vibrations within the whole vocal tract.

In the next section we present the main structure of the
algorithm used to calculate the pyknogram and the ad hoc
modifications applied to selectively attend to different infor-
mation embodied in the signal.
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A. Computing the Pyknogram of the Signal
In order to compute the instantaneous frequencies of the

speech signal (and its pyknogram) a multiband demodulation
analysis (MDA) must be performed. Similar to the process
described in [30], the MDA consists of a multiband filtering
scheme and a demodulation algorithm. First the speech signal
is bandpassed with the use of a filterbank and then each band-
pass waveform is demodulated and its instantaneous amplitude
and frequency computed.
The filterbank adopted consits of a set of Gabor bandpass

filters with center frequencies that are uniformly spaced on
the frequency axis. The filter bandwidth is either constant or
variable depending on which frequency structures we seek
to extract (Section II-B). Gabor filters are chosen because
they are optimally compact and smooth in both the time
and frequency domains. This characteristic guarantees accurate
amplitude and frequency estimates in the demodulation stage
[30] and reduces the incidence of ringing artifacts in the time
domain [19].
The demodulation schema adopted is based on the Hilbert

Transform Demodulation (HTD). Although other demodula-
tion schema are less computationally expensive (e.g.the DESA
family of algorithms [25], [30]), the HTD can give smaller
error and smoother frequency estimates [25], especially when
the first formant is close to the fundamental frequency [30].
The main schema adopted to demodulate the speech signal

can be summarized as follows:
• the speech signal s(t) is bandpass filtered and a set of
waveforms wi(t) is obtained (i denotes the output of the
i-th filterbank);

• for each bandpass waveform wi(t), its Hilbert transform
ŵi(t) is computed;

• the instantaneous amplitude for each bandpass waveform
ai(t) is computed as:

ai(t) =
√

w2
i (t) + ŵ2

i (t) (4)

• the instantaneous frequency for each bandpass waveform
fi(t) is computed as the first time derivative of the phase,
φi(t):

fi(t) =
1

2π
·
dφi(t)

dt
=

1

2π
·

d

dt
[arctan(ŵi(t)/wi(t))].

(5)
Instantaneous amplitude and instantaneous frequency are

combined together to obtain a mean-amplitude weighted short-
time estimate Fi of the instantaneous frequency for each wi(t):

Fi =

∫ t0+τ

t0
[fi(t) · a2

i (t)]dt
∫ t0+τ

t0
[a2

i (t)]dt
(6)

where τ is the selected length of the time-frame. The short-
time frequency estimate is computed for the full length of
each wi(t), with an overlap window of τ/2. The adoption of
a mean amplitude weighted instantaneous frequency (equation
6) is motivated by the fact that it provides more accurate
frequency estimates and is more robust for low energy and
noisy frequency bands when compared with an unweighted
frequency mean [30].

The computation of the short-time instantaneous frequency
for each bandpass waveform i leads to the extraction of the
pyknogram of the speech signal. Examples of pyknograms are
shown in Figures 1, 2 and 3.
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Figure 1. Pyknogram of ‘If it doesn’t matter who wins, why do we keep
score?’. 80 filters linearly spaced between 200 Hz and 8200 Hz, constant
bandwidth of 400 Hz - Filterbank setup 1. See also Figure 4 for a conventional
spectrographic representation.
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Figure 2. Pyknogram of ‘If it doesn’t matter who wins, why do we keep
score?’. 80 filters linearly spaced between 200 Hz and 8200 Hz, constant
bandwidth of 266 Mel, Filterbank setup 2.

The pyknogram, being a density plot of the frequencies
present in the input signal, reveals the presence of strong res-
onances as regions of high density of the estimated short-time
frequencies. Harmonic-like structures are identified as regions
where the short-time estimates are placed with approximately
equal frequency spacing 1. Note that the pyknogram is not a
3-D plot similar to a spectrogram: each individual point rep-
resents the location of an (amplitude-weighted) instantaneous
frequency, but not its intensity. It is also crucial that in our
approach, the bandwidths of the filters exhibit considerable
overlap, allowing the center frequencies from multiple filters
to converge on a single strong frequency. The details of the

1A special case is when the signal lacks a marked frequency component
within a given band: the estimated instantaneous frequency is then simply the
center-frequency of the filter.
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Figure 3. Pyknogram of ‘If it doesn’t matter who wins, why do we keep
score?’. 80 filters linearly spaced between 200 Hz and 8200 Hz, constant
bandwidth of 106 Mel, Filterbank setup 3.

overlap are specific to the setup employed to calculate the
pyknogram of the signal, as described in the next section.

B. Different Bandwidth, Different Frequency Structures
An extremely important role in the computation of the

pyknogram (and in the encoding of the features derived from
it) is played by the bandwidth of each individual Gabor filter
within the filterbank. By varying the bandwidth of the Gabor
filters, the short-time frequency estimates can be tuned to
identify resonances (formants) or structures due to quasi-
harmonic vibrations (e.g. during vowel production) in the
vocal tract (e.g. the harmonics of the fundamental frequency).
Fine tuning the bandwidth of the filters used for speech

analysis and speech characterization is a standard practice
found in many approaches. The power spectrum of speech
can be fine tuned (varying the bandwidth of the spectral
analysis) to enhance structures due to presence of harmonics
or formants. Generally, a broad-band spectrogram is obtained
by setting the bandwidth (through the time length of the
analysis window) to a value of about 250 Hz; a narrow-
band spectrogram has typical bandwidth of about 50 Hz. The
extraction of a conventional MFCC feature vector is based on
the definition of a filterbank of triangular filters with uniformly
spaced center frequencies and constant bandwidth on the Mel
scale: this approach produces filters with variable bandwith.
In order to tune the pyknogram to the speech resonances
for formant tracking, Potamianos et al. [30] used a Gabor
filterbank with constant bandwidth of 400 Hz.
In this work, three different filterbanks are used to compute

the pyknogram. In each case. the filterbank is composed of
Gabor filters with center frequencies which are uniformly
spaced on the Hertz scale while the bandwidths are defined as
follows:

• setup 1: constant (on the Hertz scale) bandwidth of 400
Hz

• setup 2: constant (on the Mel scale) bandwidth of 266
Mel

• setup 3: constant (on the Mel scale) bandwidth of 106
Mel

The first setup (setup 1) has been used in the literature [30]
for formant tracking and is known to be of use in identifying
structure due to the first 4 or 5 formants in the vocal tract
(below about 4000 Hz). The second setup (setup 2) has been
evaluated in our tests and found to reveal marked structures
above 4000 Hz, while enhancing the formant structure below
4000 Hz. The third setup (setup 3) has been designed to
replicate the bandwidth scaling of the triangular filters used
for MFCC extraction. With this configuration it is possible to
identify both the formants and the harmonic structures well
known in the literature and present in the range of frequencies
between 50 Hz and 4000 Hz.
Figures 1, 2 and 3 show three different pyknograms obtained

using the three different setups. The input sound file used is
the same and has been extracted from the CHAINS corpus
[9]: irm01 s01 solo.wav (If it doesn’t matter who wins, why
do we keep score?). Figure 4 shows its spectrogram computed
using Praat [5]. All three pyknograms are computed using 80
Gabor filters with uniform center frequency spacing between
200 Hz and 8200 Hz. The bandwidth of the filters are set as
described above. Thus the three setups differ in the degree of
overlap among the filters, and in the relation between overlap
and frequency.
The three different setups adopted in the calculation of the

pyknogram of the speech signal reveal different instantaneous
frequencies within the signal. Qualitatively, these differences
are found not only in the range of frequencies commonly
exploited for speaker and speech recognition (below 4000 Hz),
but extend to the higher part of the frequency scale, between
4000 Hz and 8000 Hz. In this region, Figure 3 (setup 3)
reveals instantaneous frequencies that differ greatly from the
ones detected using the other two setups in the same frequency
range.

Figure 4. Spectrogram of a speech file (‘If it doesn’t matter who wins, why
do we keep score?’). The spectrogram shows frequencies between 0 Hz and
8200 Hz

It is interesting to note that standard techniques used in
speech analysis are somewhat limited in detecting frequency
structures above 4000 Hz: the majority of them are not visible
in the spectrogram of the same speech file shown in Figure 42.
On the other hand, the same formants between 0 and 4000 Hz
are replicated almost exactly in each of Figures 1, 2, 3 and 4.
Given the unknown nature of the high frequency compo-

nents of human speech, we will not try to motivate their
presence. We will limit ourselves to encoding their differing
values (Section III) and verifying their relative utility for
speaker identification (Section VI). Moreover, Section VI-C

2No pre-emphasis is applied to the speech file to calculate the pyknograms
in Figures 1, 2 and 3. Pre-emphasis of 6dB/octave is applied to calculate the
spectrogram in Figure 4
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presents a quantitative analysis of the importance of the dif-
ferent instantaneous frequencies in the region 4000–8000 Hz,
derived according to the three setups, for the problem of
speaker identification.
Table I summarizes the frequency bandwidth employed in

setup 1, setup 2 and setup 3 for selected Gabor filters.
In the next section we describe the encoding of the pykno-

gram into the features used to characterize speech for speaker
identification.

III. SPEECH PARAMETRIZATION
A. Pyknogram Frequency Estimate Coefficients
The encoding of the pyknogram into a set of feature

vectors is straightforward, given its short-time nature and
the probabilistic approach taken in speaker identification and
verification. An utterance can be represented by an N × M
matrix where N corresponds to the number of Gabor filters
used in the filterbank and M to the number of times the input
signal can be segmented into frames with a given window
length—the value of τ in equation 6. For each frame,N values
corresponding to the estimated short-time frequency of each
Gabor filter are encoded. This approach is very similar to the
standard procedure used for, e.g., MFCC encoding; the main
difference being that in the MFCC case N corresponds to the
first N DCT coefficients used to decorrelate the cepstrum of
the signal. In our case no DCT is applied to the pyknogram,
while the frequency values are expressed in kHz. During
preliminary tests, we found that expressing the short-time
frequency estimates in kHz allows the feature set to work well
together with a Gaussian Mixture Model classifier (Section
IV). Hereafter we refer to the features based on the estimates
of the short-time frequency as pykfec: pyknogram frequency
estimate coefficients. Our decision not to apply the DCT has
the effect of introducing an element of redundancy due to
correlation in our encoding, but as we show in Section VI-B,
this does not, in fact, seem to adversely affect the accuracy of
the reference GMM system.
As a first approximation, we standardize the choice of N

(the number of Gabor filters in the filterbank) to 80, with center
frequencies uniformly spaced on a linear scale between 200
Hz and 8200 Hz; however, in Section VI-B, we examine the
effect on SI of varying the number of filters within the same
frequency range. Moreover, in order to test the importance of
instantaneous frequencies extracted from different frequency
ranges, we evaluate the speaker recognition rate provided by
40 pykfec computed using 40 Gabor filters uniformly spaced
between 200 Hz and 4200 Hz (Section VI-C), also varying
the setup adopted in the calculation of the pyknogram. Finally,
in order to quantitatively test the importance of the different
instantaneous frequencies in the region 4000 Hz–8000 Hz,
we also evaluate the speaker recognition rate provided by
40 pykfec computed using 40 Gabor filters uniformly spaced
between 4200 Hz and 8200 Hz (Section VI-C), varying the
setup adopted in the calculation of the pyknogram.
The window length chosen to calculate the short-time fre-

quency estimate is 1024 taps (about 23 msec for a signal
sampled at 44100 Hz) with an overlap between successive

windows of 512 taps. No channel compensation schema is
adopted.

B. MFCC
In order to provide a comparison to the performance ob-

tained using pykfec in the task of speaker identification, we
also use standard MFCCs with the same general GMM clas-
sifier. Since pykfec are extracted using very different setups
and taking into account different frequency ranges, the MFCC
are extracted according to three schema roughly matching the
ranges analysed in the pykfec extraction:

• MFCC-0-8000: MFCC extracted using 40 triangular fil-
ters spaced between 0 Hz and 8000 Hz;

• MFCC-0-4000: MFCC extracted using 40 triangular fil-
ters spaced between 0 Hz and 4000 Hz;

• MFCC-4000-8000: MFCC extracted using 40 triangular
filters spaced between 4000 Hz and 8000 Hz;

The number of coefficients used for identification is not
selected a priori; it is evaluated experimentally (Section VI)
in order to maximize the speaker recognition rate. The window
length is again set to 1024 taps with an overlap between
successive windows of 512 taps, to ensure homogeneous
sampling between the two approaches (MFCC and pykfec)
for the same input files. The zeroth cepstral coefficient is not
used in the Mel-frequency cepstral feature vector, while the
value of the coefficients is normalized using cepstral mean
removal [34], [36], in order to compensate for the different
recording channels used to train and subsequently test the
induction algorithm.

C. RASTA-PLP
A second comparison is provided using RASTA-PLP coef-

ficients [16], [17] for speech parametrization. PLP coefficients
are a hybrid representation, using aspects of both a filterbank
and an all-pole model spectral representation. The spectrum
is first passed through a bark-spaced and trapezoidal-shaped
filterbank and then fitted with an all-pole model. In this work,
the model order is not fixed, but it varies in order to maximize
the recognition rate of the induction algorithm. The spectral
representation is transformed to cepstral coefficients and a
discrete cosine transform (DCT) applied as a final step. The
zeroth cepstral coefficient is discarded as a form of energy
normalization [34]. In order to compensate for channel effects,
the input speech is pre-processed using RASTA filtering [17]
before proceding to the extraction of the PLP feature vector.
RASTA-PLP features are extracted in the frequency interval
0 Hz–8000 Hz and with a time window of about 0.23 msec
(with a step equal to half of the time window).

IV. THE GAUSSIAN MIXTURE SPEAKER MODEL

The focus of this study is the utility of the various para-
metric representations of speech employed. Accordingly, a
rather generic and simple classifier is employed, which is
sufficiently powerful to discriminate among alternative fea-
tures. No attempt is made to optimize the classifier however.
Gaussian Mixture Models are classifiers commonly used in
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Table I
CENTER FREQUENCY (CF) AND BANDWIDTH (BW) FOR SELECTED GABOR FILTERS USED IN ’SETUP 1’, ’SETUP 2’ AND ’SETUP 3’

cf setup 1 setup 2 setup 3
[Hz] bw [Hz] bw [Mel] bw [Hz] bw [Mel] bw [Hz] bw [Mel]

200 400 510 200 266 85 106
400 400 414 260 266 100 106
600 400 350 305 266 120 106
1000 400 266 400 266 160 106
3600 400 105 1020 266 400 106
6200 400 65 1640 266 650 106
8200 400 50 2100 266 840 106

speaker identification/verification, e.g. [27], [34], [36], [35].
This classifier is able to approximate the distribution of the
acoustic classes representing broad phonetic events occurring
in speech production (e.g. during the production of vowels,
nasals, fricatives) and often outperforms other algorithms on
the problem of Speaker Identification [36], [40], [42]. During
training, the induction algorithm estimates the mixture of
Gaussian models that best approximates the distribution of
values produced by the SI system front-end for a given speaker.
Formally, a speaker is described by a mixture of M

Gaussian models Γ = {γ1, ..., γM}: the mixture density is a
weighted sum of the M component densities. Given an input
feature vector →x , the conditional probability is computed from
the mixture as follows:

p(
→
x |Γ) =

M
∑

m=1

cm · γm(
→
x ) (7)

where cm are the mixture weights and γm(
→
x ) an N -variate

Gaussian function. The dimensionality of the Gaussian func-
tion (N ) coincides with the dimensionality of the feature
vector

→
x , while the M models, and relative weights, are

estimated from the training data using a special case of the
expectation-maximization (EM) algorithm [36].
A set of S speakers {s1, ..., sS} is represented by S

Gaussian mixture models {Γ1, ...,ΓS}. A given observation
sequence X = {x1, ..., xT } is tested by finding the speaker
model which has maximum a posteriori probability. By apply-
ing Bayes rule and using the logarithm [36], the probability
can be computed as:

Ŝ = argmax
1≤s≤S

T
∑

t=1

log p(
→
x t |Γs) (8)

To evaluate different test utterance lengths, the sequence of
feature vectors is divided for each speaker into a sequence of
overlapping segments of t0 feature vectors [36]. Each segment
is treated as a separate test utterance. For a test set containing
the observation sequence X = {x1, ..., xT }, two adjacent
segments would be:

segmentn = xn, .., xn+t0

and
segmentn+1 = xn+1, .., xn+t0+1

where n + t0 + 1 ≤ T .

The final performance evaluation is computed as the ratio
of correctly identified sequences, over the total amount of
sequences for the whole set of speakers.
The GMM can assume different forms depending on the

choice of covariance matrix used in the estimation of the
N -variate Gaussian functions. In this work, nodal, diagonal
covariance matrices are used to model the speakers [36], [40],
[42]

A. Algorithm Details
There are some known shortcomings of the GMM induction

algorithm, due largely to the initialization procedure used to
estimate variance and mean of each Gaussian in the mixture,
and to the maximum and minimum values permitted for the
variance. As pointed out by Reynolds et al. [36], the issue
of initializing the GMM algorithm for SI is less challenging
than in other areas [26]. In Speaker Identification, elaborate
initialization schemes are not necessary for training Gaussian
mixture models [36]. We apply a k-means clustering algorithm
to find M clusters in the training data as an initialization
procedure. The k-means search stops whenever a stable con-
figuration is found.
On the other hand, the maximum and minimum values

allowed for the variance of each Gaussian in the mixture are
two parameters that play an important role in the training of
the GMM algorithm. In preliminary tests using pykfec features,
we found that if the nodal variance assumes big values
(# 100), the EM algorithm does not always converge and the
generalization accuracy of the GMM is badly affected. When
the minimum nodal variance is not bounded, it may happen
that the GMM models singularities due, e.g., to a lack of data
to represent a specific speaker or to the presence of outliers
in the training set caused by noisy data [36]. To overcome
these two problems, we encode the pykfec, which express the
estimate of short-time instantaneous frequency, in kHz. This
simple stratagem guarantees that the maximum nodal variance
does not exceed a few kHz, or the maximum bandwidth of
the filters in the filterbanks (Table I). The minimum value for
the nodal variance is set to 0.001, which corresponds to a
minimum nodal variance of 1 Hz when pykfec are used. The
same absolute value for minimum nodal variance is used when
MFCCs are employed.

V. DATABASE DESCRIPTION
The CHAINS corpus [9] contains the recordings of 36 speak-

ers obtained in two different sessions with a time separation



8

of about two months. The first recording session was carried
out in a professional recording studio; speakers were recorded
in a sound-proof booth using a Neumann U87 Condenser
microphone. The second recording session was carried out in
a quiet office environment with a Shure SM50 head-mounted
microphone connected to a Marantz PMD 670 Compact Flash
recorder. Across the two recording sessions, each speaker
provided recordings in six different speaking styles. In this
work, we make use of three different speaking styles: NORM 3 ,
in which speakers read a prepared text alone at a comfortable
rate; FAST, in which the same prepared text was read at a
fast rate; and WHSP, which is a whispered reading of the
same material. Full details of the corpus are provided in [9].
The NORM condition, which belongs to the first recording
session of the corpus, is used as training material while speech
recorded in the second session in the FAST and WHSP styles
is used as test material, in order to examine robustness with
respect to both stylistic and channel characteristics.
Among the speech material the CHAINS corpus offers, we

select (for each of the speaking styles above) the first nine
individual sentences as speech samples for testing (s1 to s9
in the corpus), while the next sentences (s10 to s33 in the
corpus) are used to generate the training sets. The training of
the GMMs is performed using only NORM recordings from
the first recording session.
Four sets of the available speakers are employed (8, 16,

24 and 36 speakers respectively). The 8-speaker, 16-speaker
and 24-speaker sets have equal numbers of males and females
and speakers are drawn from the university population in
Dublin (native speakers of Hiberno-English). The 36-speaker
set covers the whole set of available speakers in the corpus.
Of these, 28 (16 male, 12 female) are from the Eastern part
of Ireland (Dublin and adjacent counties). A further 8 subjects
(4 male, 4 female) are from the UK or USA: 2 males from
UK and 2 males from US; 3 females from US and the last
remaining female from the UK [9] 4.

VI. EXPERIMENTAL EVALUATION
A. Methodology
The utility of our three novel encoding methods (pykfec

setup 1, setup 2, setup 3) is evaluated in a closed-set text-
independent speaker identification task. We compare perfor-
mance with encodings using MFCCs and RASTA-PLP coeffi-
cients. The evaluation is subdivided in three parts. In the first
part (Section VI-B), we estimate the accuracy of the reference
GMM system, taking into account two different recording
channels and two speaking styles. The training material is
extracted from the first recording session of the CHAINS corpus
and comprises speech samples recorded in the NORM style; the
test material is extracted from the second recording session and
employs speech samples recorded in the FAST style. Results
are obtained varying the number of parameters used to encode
speech, the amount of training material used, the number of

3which is referred to as SOLO in the CHAINS corpus.
4The bulk of the subjects are aged between 19 and 25 years: the mode of

the data is equal to 21, the median value equal to 22 and the semi-interquartile
range equal to 3.5.

models in the Gaussian mixture and the number of speakers at
hand. All the parameters (pykfec, MFCC, and RASTA-PLP)
are extracted within the frequency range of 0 Hz–8000 Hz.
In the second part of the evaluation, we present results

obtained by restricting the parameterization to two different
frequency ranges: we compare the speaker recognition rate
obtained extracting parameters from the frequency range 0
Hz–4000 Hz and from the the range 4000 Hz–8000 Hz.
This is done to quantitatively evaluate the importance of the
instantaneous frequencies revealed by the AM-FM approach
within the higher part of the frequency axis (the frequency
range 4000 Hz–8000 Hz). The training material is extracted
from the first recording session of the CHAINS corpus using
speech samples recorded in the NORM style; the test material
is extracted from the second recording session in which the
speech was recorded in the FAST style. Results obtained using
both MFCC and pykfec are reported.
In the third part of the evaluation, non-modal (whispered)

speech is used as testing material. This is done to provide a
very hard test bed for the identification system and to assess
the extent to which it is possible for a model trained on
modally voiced speech to generalize to whispered speech. The
training material is extracted from the first recording session of
the CHAINS corpus (NORM); the test material is again extracted
from the second recording session, but in the WHSP style.
Results obtained using both MFCC and pykfec are reported
and compared with the accuracy results reported in the first
and second part of the evaluation.
In each case, the accuracy of the SI system is expressed

as the mean of ten runs, each run having a different random
initialization of the GMMs. The error of the generalization
score is calculated as twice the standard deviation of the mean,
corresponding to a confidence interval of about 95%.

B. Varying Recording Channel and Speaking Style
In this section we compare three novel parameterizations

pykfec (setup 1, setup 2, setup 3), along with more standard
MFCC and RASTA-PLP encodings. The training material is
extracted from the first recording session of the CHAINS corpus
(Section V) with speech in the NORM style; the test material
is from the second, lower fidelity, recording session, and uses
speech spoken in a FAST style.
Figures 5 (a), (b), (c) and (d) summarize the results obtained

encoding speech with pykfec (setup 1, setup 2, setup 3)
extracted from the frequency range 0 Hz–8000 Hz (the Gabor
filters are spaced linearly between 200 Hz and 8200 Hz, with
varying bandwith according to the selected setup).
Figure 5 (a) shows the accuracy of the reference GMM

classifier varying the number of Gaussian components and
varying the AM-FM setup adopted to extract the pyknogram
of the signal. The total length of the training material is ap-
proximately 25 seconds per speakers, the number of speakers
is 16 while utterances of 10 seconds are used for testing. 80
pykfec are used to encode the speech signal.
Figure 5 (b) shows the accuracy of the GMM classifier

varying the total length of training material per speaker. The
number of speakers is 16 while utterances of 10 seconds are
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Figure 5. Accuracy of the reference GMM classifier using pykfec for speaker parametrization, varying (a) the number of Gaussian components, (b) varying
the length of the training material, (c) varying the number of speakers and (d) varying the number of features. Parameters are extracted from the frequency
interval 0 Hz–8000 Hz.

used for testing. 80 pykfec are used to encode the speech
signal.
Figure 5 (c) summarizes the accuracy of the GMM classifier

while varying the number of speakers. The number of Gaus-
sian components is 64 while utterances of 10 seconds are used
for testing. The amount of training material is approximately
25 seconds per speaker. 80 pykfec are used to encode the
speech signal.
Finally, Figure 5 (d) shows the accuracy of the classifier

while varying the number of features (pykfec setup 1 and setup
3). The number of Gaussian components is 32; utterances
of 5 seconds are used for testing. The amount of training
material per speaker is approximately 25 seconds. The number
of speakers is 16.
Figures 5 (a), (b), (c) and (d) indicate that a parametrization

based on pykfec setup 3 outperforms parametrizations based
on both setup 1 and setup 2 (e.g.: considering the 16-speaker
set, training 64 GMMs per speaker, using 10 second test
utterances and approximately 25 seconds of training material
per speaker, pykfec setup 1 provides an accuracy of 83%±3%,
pykfec setup 2 provides an accuracy of 72%± 5% and pykfec
setup 3 provides an accuracy of 92% ± 3%, as plotted in
Figure 5 (a)). Pykfec setup 3 shows the best identification

performance and greater stability while increasing the number
of Gaussian components in the reference classifier, increasing
the amount of training material and varying the number of
features. Unsurprisingly, if we increase the number of speakers
while keeping the amount of training material per speaker
constant, the accuracy of the reference system decreases.
However, pykfec setup 3 still performs better than pykfec
setup 1 and pykfec setup 2 in all experiments. Pykfec setup
2 shows the worst recognition rate in all the experiments
presented here. It is interesting to note (Figure 5 (d)) that in
the case of pykfec the reference system is capable of handling
considerable redundancy in the features very well: increasing
the number of parameters from 40 to 100 does not seem
to produce any overfitting (training 32 GMMs per speaker,
using 5 second test utterances and approximately 25 second
of training material per speaker, pykfec setup 2 provides an
accuracy of about 79%, pykfec setup 3 provides an accuracy
of about 87%, as plotted in Figure 5 (d)).
Figures 6 (a), (b) and (c) summarize the results obtained

encoding speech with MFCCs extracted from the frequency
range 0 Hz–8000 Hz.
Figure 6 (a) plots classifier accuracy while varying the

number of Gaussian components and the number of MFCCs
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Figure 6. Accuracy of the reference GMM classifier using MFCC for speaker
parametrization, varying (a) the number of Gaussian components, (b) varying
the length of the training material and (c) varying the number of speakers.
Parameters are extracted from the frequency interval 0 Hz–8000 Hz.

used to encode the signal. The total length of the training
material is approximately 25 seconds per speakers, the number
of speakers is 16 while utterances of 10 seconds are used for
testing.
Figure 6 (b) shows the accuracy curves of the classifier

while varying the total length of training material per speaker.

The number of speakers is 16, while utterances of 10 seconds
are used for testing.
Figure 6 (c) shows the accuracy of the classifier while

varying the number of speakers. The number of Gaussian
components is 64 while utterances of 10 seconds are used
for testing. The amount of training material is approximately
25 seconds per speaker.
Figures 6 (a), (b) and (c) show that the accuracy of the

reference system trained with MFCCs is comparable to the
recognition rate obtained using pykfec setup 3 (e.g.: consider-
ing the 16-speaker set, training 64 GMMs per speaker, using
10 second test utterances and approximately 25 seconds of
training material per speaker, pykfec setup 3 (80 features) pro-
vide an accuracy of 92%±3%, 25MFCCs provide an accuracy
of 88%±4% and 35MFCCs provide an accuracy of 88%±2%,
as shown in Figure 5 (a) and Figure 6 (a)). However, when
MFCCs are adopted for speech encoding, the stability of the
GMMs across the various experimental setups is somewhat
uneven: increasing the number of cepstral coefficients used
to encode the speech may, under some circumstances, harm
the recognition rate. Figure 6 (a) shows that both 35 MFCCs
and 25 MFCCs parameterizations yield equivalent accuracy
scores while varying the number of Gaussian components
in the classifier. On the other hand, Figure 6 (b) suggests
that when increasing the amount of training material, 25
MFCCs provide better performance than 35 MFCCs: training
the GMM classifier with about 60 seconds of material per
speaker and 64 Gaussian components per speaker, 25 MFCCs
provide an accuracy of 94%± 1% and 35 MFCCs provide an
accuracy of 88% ± 1% This is not the case for pykfec setup
3: the trained classifier does not show signs of overfitting due
to the increased number of features, as shown in Figure 5 (d).
Figures 7 (a) and (b) summarize the results obtained encod-

ing speech with RASTA-PLP coefficients extracted from the
frequency range 0 Hz–8000 Hz.
Figure 7 (a) plots accuracy while varying the number

of Gaussian components and the number of RASTA-PLP
coefficients used to encode the signal. The total length of the
training material is approximately 25 seconds per speakers,
the number of speakers is 16, while utterances of 10 seconds
are used for testing.
Figure 7 (b) shows accuracy while varying the total length

of training material per speaker and the number of RASTA-
PLP coefficients used to encode the the signal. The number
of speakers is 16, while utterances of 10 seconds are used for
testing.
Figures 7 (a) and (b) indicate that RASTA-PLP coefficients

are not as effective in capturing speaker identity as MFCCs
and pykfec setup 3, within the context of our relatively simple
classifier. While the GMM recognition rate using the RASTA-
PLP parametrization reaches about 80% when increasing
both training material and number of Gaussian components,
MFCCs and pykfec setup 3 yield accuracy scores of about 90%
in similar experimental setups — see Figures 5 (a), (b) and
Figures 6 (a), (b).
In order to facilitate a comparison of the results presented

in Figures 5 (a–d), Figures 6 (a–c) and Figures 7 (a,b), we
reproduce in Table II and Figure 8 some of the accuracy
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Figure 7. Accuracy of the reference GMM classifier using RASTA-PLP for
speaker parametrization, varying (a) the number of Gaussian components and
(b) varying the length of the training material. Parameters are extracted from
the frequency interval 0 Hz–8000 Hz.

results obtained in the different experimental setups. ‘Training
Length’ indicates the amount of training material per speaker
used. In Table II ‘Test Length’ gives the length of the utterance
used for testing; ‘Number of Features’ indicates the number
of parameters used to encode the speech signal.

C. The Role of Different Frequency Intervals
In this section, we present results obtained by restricting our

parameter extraction to two limited frequency ranges, 0 Hz–
4000 Hz and 4000 Hz–8000 Hz. The motivation for this is to
investigate the potential role in speaker identification for the
structures above 4 kHz that are apparent in the pyknogram, but
less obvious from a spectrographic representation. In general,
little is known about the relevance or origin of such structures,
or how they might vary from individual to individual. The
training material is extracted from the first recording session of
the CHAINS corpus and uses NORM speech; the test material is
extracted from the second recording session and spoken in the
FAST style. The reference classifier is trained with 64 Gaussian
components and utterances of 10 seconds are used for testing.
The results obtained are also compared with MFCCs extracted
from the same two frequency ranges (Figure 10).

Table II
ACCURACY OF DIFFERENT ENCODINGS VARYING THE TRAINING AND

TEST MATERIAL LENGTH AND NUMBER OF PARAMETERS. THE
REFERENCE CLASSIFIER IS TRAINED WITH 64 GAUSSIAN COMPONENTS.

RESULTS ARE OBTAINED ON THE ‘16-SPEAKER’ DATASET. THE
ACCURACY SCORES ARE COMPUTED AS THE MEAN OF TEN INDEPENDENT
RUNS, EACH RUN HAVING A DIFFERENT RANDOM INITIALIZATION OF THE
GMMS. THE ERROR OF THE SCORE IS CALCULATED AS TWICE THE

STANDARD DEVIATION OF THE MEAN.

Training Length Test Length Number pykfec setup 1
[sec.] [sec.] of Features ACC. [%] Error [%]

25 5 20 83 5
25 5 40 87 6
25 5 80 87 5
25 10 80 92 3
60 10 80 93 1

Training Length Test Length Number MFCC
[sec.] [sec.] of Features ACC. [%] Error [%]

25 10 15 86 3
25 10 20 86 4
25 10 25 88 4
60 10 25 94 1
25 10 35 88 3
60 10 35 88 1

Training Length Test Length Number RASTA-PLPC
[sec.] [sec.] of Features ACC. [%] Error [%]

25 10 12 54 6
25 10 16 65 4
25 10 20 76 9
60 10 20 82 6
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Figure 8. Accuracy of the reference GMM classifier using pykfec setup
1, setup 2 and setup 3 compared with the accuracy of the same classifier
using 25 MFCC, 35 MFCC and 20 RASTA-PLP for speaker parametrization.
The reference classifier is trained with 64 Gaussian components; results are
obtained on the ‘16-speaker’ dataset and about 60 seconds of training material
per speaker is used; 10 second utterances are used for testing. The different
parameters are extracted from the same frequency interval 0 Hz–8000 Hz.

Figure 9 (a) shows that encoding speech with 40 pykfec
setup 3 features extracted from the interval 0 Hz–4000 Hz pro-
vides better identification performance than the use of either
pykfec setup 1 or pykfec setup 2, with accuracy curves that are
comparable to those obtained using 80 pykfec setup 3 features
extracted from the larger frequency range of 0 Hz–8000 Hz
(e.g.: considering the 24-speaker set, training 64 GMMs per
speaker, using 10 second test utterances and approximately
25 seconds of training material per speaker, pykfec setup 3
0 Hz–4000 Hz (40 features) provide an accuracy of 79 ± 4
while pykfec setup 3 0 Hz–8000 Hz (80 features) provide an
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Figure 9. Accuracy of the reference GMM classifier using pykfec for speaker
parametrization, varying the number of speakers considered and the frequency
interval from which the parameters are extracted (0 Hz–4000 Hz and 4000 Hz–
8000 Hz).

accuracy of 80±6 , as shown in Figure 9 (a) and Figure 5 (c)).
On the other hand, Figure 9 (b) clearly shows that parameters
extracted from the higher frequency range 4000 Hz–8000 Hz
are less selective for speaker identity than those from 0 Hz
to 4000 Hz, e.g.: considering the 24-speaker set, training
64 GMMs per speaker, using 10 second test utterances and
approximately 25 seconds of training material per speaker,
pykfec setup 3 4000 Hz–8000 Hz (40 features) provide an
accuracy of 58±7; pykfec setup 3 0 Hz–4000 Hz (40 features)
provide an accuracy of 79 ± 4 (Figure 9 (a)).
It is interesting to note that pykfec setup 1 and pykfec setup

2 provide equivalent accuracy in the frequency range 0 Hz–
4000 Hz, while in the frequency range of 4000 Hz–8000 Hz
equivalent accuracy is obtained by adopting pykfec setup 1
and pykfec setup 3. This corresponds well with the impression
of similarity seen in comparing the three setups in Figure 1,
Figure 2 and Figure 3. The pyknogram obtained adopting setup
1 and setup 2 appear to represent formant-like information
below 4000 Hz similarly, while setup 3 draws out individual
harmonics more. Conversely, setup 1 and setup 3 represent
broad resonances above 4 kHz in similar fashion, while these
get washed out with the broad bandwidths of setup 2.

Figure 10 shows the results obtained using 25 and 35
MFCCs to encode the same speech signals as above, varying
the number of speaker and the frequency intervals from which
MFCCs are extracted. The reference classifier is trained with
64 Gaussian components and utterances of 10 seconds are used
for testing.
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Figure 10. Accuracy of the reference GMM classifier using MFCC for
speaker parametrization, varying the number of speakers considered, the
number of coefficients and the frequency interval from which the parameters
are extracted (0 Hz–4000 Hz and 4000 Hz–8000 Hz).

Figure 10 shows that 25 and 35 MFCCs provide somewhat
equivalent identification rates when extracted from the same
frequency intervals (e.g.:considering the 36-speaker set, train-
ing 64 GMMs per speaker, using 10 second test utterances and
approximately 25 seconds of training material per speaker, 25
MFCC 0 Hz–4000 Hz provide an accuracy of 66 ± 6 while
35 MFCC 0 Hz–4000 Hz provide an accuracy of 71 ± 5).
Moreover it confirms that parameters extracted from the fre-
quency range 4000 Hz–8000 Hz are not good indicators of
speaker identity, e.g.:considering the 36-speaker set, training
64 GMMs per speaker, using 10 second test utterances and
approximately 25 seconds of training material per speaker,
35 MFCCs 0 Hz–4000 Hz provide an accuracy of 71 ± 5
while 35 MFCCs 4000 Hz–8000 Hz provide an accuracy
of 47 ± 4. It is interesting to note that the recognition rate
obtained using 40 pykfec setup 3 features is roughly equivalent
to the performance obtained with both 25 and 35 MFCCs,
irrespective of the frequency range from which the parameters
are extracted, eg.: considering the 36-speaker set, training
64 GMMs per speaker, using 10 second test utterances and
approximately 25 seconds of training material per speaker,
pykfec setup 3 0 Hz–4000 Hz (40 features) provides an
accuracy of 79 ± 4 (Figure 9 (a)) while 35 MFCC 0 Hz–
4000 Hz provide an accuracy of 71 ± 5 (Figure 10).
Figure 11 summarizes some of the results presented in this

section.

D. Different Phonation: Whispering
In this section, non modal, whispered, speech is used to

test the GMM reference classifier. This is done to provide
a relatively hard test case for the identification system and
to verify the extent to which it is possible to generalize an
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Figure 11. Accuracy of the reference GMM classifier using 40 pykfec setup
3 compared with the accuracy of the same classifier using 25 MFCC and 35
MFCC for speaker parametrization. The reference classifier is trained with
64 Gaussian components, results are obtained on the ‘36-speaker’ dataset
and about 25 seconds of training material per speaker is used; 10 second
utterances are used for testing. The different parameters are extracted from
the same frequency interval 0 Hz–4000 Hz.

identification model (the mixture of Gaussian models trained
for each speaker) based on modally voiced speech to whis-
pered speech. The training material is NORM speech from the
first recording session of the CHAINS corpus; the test material
is from the second recording session in which speech was
whispered throughout. The reference classifier is trained with
64 Gaussian components and utterances of 10 seconds are used
for testing. The results reported in this section are obtained
using both pykfec and MFCCs for speech parametrization
(Figure 12).
Figure 12 shows that neither MFCCs nor pykfec provides a

speech parametrization that is invariant with respect to drastic
changes in phonation: the identity model extracted from modal
speech (the NORM style) is not useful when test samples are
whispered. On the other hand, when the same models are
tested using FAST speech, the reference system is well capable
of recognize speakers identity — Figures 5(a)(b)(c)(d) and
Figures 6(a)(b)(c).
Finally, Figure 13 shows the effect of extracting MFCCs

and pykfec from two different frequency ranges: 0 Hz–4000 Hz
and 4000 Hz 8000 Hz using the same experimental conditions
as above. The training and test materials are as before. The
reference classifier is trained with 64 Gaussian components
and utterances of 10 seconds are used for testing.
Figures 13 (a) and 13 (b) show that 40 pykfec setup 3

extracted from the frequency range 0 Hz–4000 Hz provides
a better recognition rate than any other encoding tested.
Nevertheless, the accuracy of the reference system is far from
ideal, confirming that the parametrizations explored are not
invariant with respect to drastic changes in phonation. For
the purpose of comparison with Figure 1, Figure 14 shows
a sample pyknogram of ‘If it doesn’t matter who wins, why
do we keep score?’, derived from whispered speech. Finally,
Figure 15 summarizes some of the results presented in this
section.
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Figure 12. Accuracy of the reference GMM classifier trained on SOLO speech
and tested using WHSP speech varying the number of speakers considered and
the parametrization of the speech samples. Parameters are extracted from the
frequency interval 0 Hz–8000 Hz.

VII. CONCLUSIONS

This work has introduced a new set of descriptors that
capture the identity of speakers well and that demonstrate
robustness with respect to changes in recording channel and
speaking style, without requiring any advanced channel com-
pensation schema as it is usually the case for standard encod-
ing approaches such as MFCCs. Our experimental evaluation
indicates that the characterization of the different instantaneous
frequencies within the speech signal play a significant role in
capturing the identity of a speaker. The identity of a human
speaker can be exploited robustly by looking at which instan-
taneous frequencies are produced by the speech production
system.
The great plasticity and complexity of the human speech

production system ensure that the problem of speech
parametrization is not uniquely solvable. For this reason this
work explores three different way to decompose the speech
signal within the same framework. Three different setups were
tested for computing the pyknogram of the signal and the
derived pykfec parameters; three setups that differ in their
specificity for the various harmonics and resonances typical
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Figure 13. Accuracy of the reference GMM classifier trained on SOLO speech
and tested using WHSP speech varying the number of speakers considered and
the parametrization of the speech samples. Parameters are extracted from the
frequency intervals 0 Hz–4000 Hz and 4000 Hz–8000 Hz.

of the speech signal.
When compared with pykfec setup 1 and pykfec setup 2,

pykfec setup 3 show the best performance in terms of speaker
identification and stability, as we increase the number of
Gaussian components in the reference classifier, the amount of
training material and the number of features. With respect to
the latter, despite the introduction of clear redundancy among
the descriptors, the reference GMM classifier shows no loss in
recognition rate as we increase the number of parameters from
40 up to 100. Moreover, with the proposed AM-FM approach,
channel normalization is not required, as the (instantaneous)
amplitude is used only for identifying the short time frequency
estimate within a single band.
In the experiments in which we selectively extracted param-

eters from restricted frequency ranges, we found that although
the pykfec features appear to reveal interesting structures
above 4 kHz, these are not necessarily of use in speaker
identification, and our novel features did not fare significantly
better than the MFCC representation.
In the first set of experiments, we demonstrated that the

novel representations are capable of generalizing well from
high-quality speech recorded at a comfortable rate to lower-
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Figure 14. Pyknogram of ‘If it doesn’t matter who wins, why do we keep
score?’ (whisper). 80 filters linearly spaced between 200 Hz and 8200 Hz,
constant bandwidth of 400 Hz - Filterbank setup 1.
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Figure 15. Accuracy of the reference GMM classifier using 40 pykfec setup
3 compared with the accuracy of the same classifier using 25 MFCC and 35
MFCC for speaker parametrization. The reference classifier is trained with
64 Gaussian components, results are obtained on the ‘24-speaker’ dataset
and about 25 seconds of modal speech (NORM) per speaker is used; 10
second (‘whisper’) utterances are used for testing. The different parameters
are extracted from the same frequency interval 0 Hz–4000 Hz.

quality recordings in which the speaker tried to speak quickly.
This represents a promising degree of robustness with respect
to both channel characteristics and style. The robustness has its
limits, however, as was demonstrated when we used whispered
speech as test material. Even here though, it was clear that the
new pykfec may be of use in the future, as results obtained
with setup 3 when features were extracted below 4 kHz were
demonstrably better than either of the other two setups, or
either of the MFCC parameterizations employed.

Our examination of the robustness of these novel represen-
tations are necessarily limited in scope. However, the robust
performance across the board exhibited by the novel AM-
FM derived features are promising and merit the attention
of the speaker identification and verification community for
consideration in further work.
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