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ABSTRACT

Most current language identification (LID) systems make little or no use of prosodic information,
despite the importance of prosody in LID by humans. The greatest obstacle has been that of finding
an appropriate feature set which captures linguistically relevant prosodic information. The only
system to attempt LID entirely on the basis of prosodic variables uses a set of over 200 features
which are selected and combined in a task-specific manner [12]. We apply a novel recurrent neural
network model to the task of pairwise discrimination among languages. Network inputs are limited
to delta-Fy and the first difference of the band limited amplitude envelope. Initial results are
based on all pairwise combinations of English, German, Japanese, Mandarin and Spanish, with 90
speakers per language.
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1. PROSODY AND LANGUAGE IDENTIFICATION

Most current approaches to automatic language identification use some form of segment recognition,
and base subsequent identification on segmental and phonotactic probabilities [7]. A few models
incorporate a limited amount of prosodic information [4], but in the absence of a well-defined set
of prosodic features, prosody is still of very limited utility. This is despite evidence that prosody
serves an important role in human identification of languages, both for adults [10] and even more
so in infants [1].

Although the relationship between acoustic patterns and underlying segments or features is com-
plex, much successful work has been done on establishing the nature of this relationship. The
underlying segmental or featural inventories are usually reasonably uncontroversial. The same can-
not be said for prosodic units, which remain elusive even in well-studied languages like English and
Japanese [9]. Likewise, the relationship between concrete or physical prosodic variables, such as
Fy modulation or amplitude envelope variation, and underlying linguistic units is poorly under-
stood and further complicated by the influence of a host of extra-linguistic co-determinants, such
as emotional state, gender, speaking style, etc.

In the largest study which evaluated the potential of exclusively prosodic features in language iden-
tification, Thymé-Gobbel and Hutchins [12] used 47 single features and a further 173 feature pairs in
pairwise discrimination tasks among the languages English, Spanish, Japanese and Mandarin. Fea-
tures included averages, deltas, standard deviations and correlations of measures based on pitch,
syllable duration, amplitude, low frequency FFT of the amplitude envelope and phrase location



within a breath group. For each feature or feature pair, a likelihood statistic based on histograms
was computed and used for discrimination on test data. Overall, they found pitch-based features
to be of most utility, either alone, or in combination with other features. Amplitude-based features
fared worst, often leading to performance below the level of chance. Although best performance
was very encouraging, the approach suffered from the serious drawback of relying on combinations
from a very large set of features, with different features proving maximally effective in different
pairwise discrimination tasks.

A major problem with this approach is the task of deciding among the multitude of candidate
features. When combinations of features are to be used, comparative evaluation of features sets
becomes computationally intractable. In the present study, we seek to establish whether discrim-
ination among languages based on prosodic variables is possible without any a priori decisions
about the form of underlying features. To this end, we train a novel recurrent network to discrim-
inate among languages, providing only either the first difference of Fy or the first difference of the
bandpass filtered amplitude envelope as input, and the language identity as a training signal.

2. EXPERIMENTS

2.1 Speech processing

We use a subset of the OGI Multi-Language Telephone Speech Corpus [8], restricting our attention
to the five languages English, Japanese, Spanish, Mandarin Chinese and German. The first four
languages were those used in [12], and were selected because they include stress-, syllable- and
mora-timed languages, and languages with lexical tones, stress accents, and pitch accents.

The OGI corpus provides recordings acquired over commercial telephone lines of speakers’ responses
to an automatically generated series of prompts. The prompts elicit lexically constrained responses
(e.g. “Please recite the seven days of the week”), topic-specific but otherwise unconstrained re-
sponses (e.g. “Tell us something that you like about your home town”) as well as about 60 seconds
of completely unconstrained speech per caller. For each network simulation, 50 speakers of each
language were randomly assigned to the training set, and 20 speakers each to the validation and
test sets. All topic-specific utterances and short unconstrained utterances from each speaker were
used in training, validation and testing of individual networks. Generalization was then further
tested by presenting long (max 50 sec) files of unconstrained speech to a committee of 10 networks
and taking the average network output over the final 0.5 sec.

Log Fy was estimated for each 1 ms of speech. This estimate was first differenced, downsampled to
100 Hz using a sliding rectangular window, smoothed using a simple 15 point rectangular window
average, and rescaled to lie within the range [-1,1]. We refer to this input as AFy.

The amplitude envelope was computed by filtering the speech with a low-order Butterworth band-
pass filter centered at 1000 Hz with a bandwidth of 500 Hz. Results of both Cummins (1997),
and Scott (1993), suggest that the amplitude variation in this frequency range is important for the
perceived rhythm of speech. The filtered speech was rectified by taking absolute values of each
sample and then smoothed using a Butterworth lowpass filter with cut-off at 10 Hz. It was then
first-differenced, downsampled to 100 Hz, re-smoothed and rescaled in the same manner and using
the same parameters as for AFy. This input will be called AEnv. Network inputs thus consist of
a time series of either AFy or AEnv at 100 Hz.
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Figure 1: One LSTM block containing a single cell.

2.2 Network training

Recurrent neural networks which automatically extract informationally relevant features from on-
line input offer the promise, in principle, of finessing the problem of choosing effective inputs from
a large set of candidate featural representations. Conventional recurrent neural networks, however,
suffer from the severe limitation that information which is distributed over more than about 10-12
time steps (0.1 sec for the present data) cannot, in general, be effectively used [5]. An attempt
to overcome these limitations is the Long Short-Term Memory (LSTM) model, first presented in
Hochreiter and Schmidhuber (1997). In an LSTM network (Fig 1), conventional hidden units are
replaced by memory blocks containing one or more memory cells. The heart of a cell is a linear
unit with a fixed self-recurrent connection with weight of 1.0, which ensures that activation in the
cell remains there in the absence of any other input. Activation flowing into the unit is gated by
an input gate, which is a sigmoidal unit with activation ranging over [0,1]. The net input to each
cell in a block is multiplied by the activation of the input gate, allowing the input gate to decide
what information the cell is exposed to. After gating, cell input is squashed by a centered sigmoid.
Likewise, cell output is first squashed by a centered sigmoid, and then gated by the activation
of an output gate. When activation flows forward in the network, the input gate decides which
information should be allowed into the cells, while the output gate decides when the cell should
contribute to the net input of other units.

Network training is a combination of truncated Back Propagation Through Time and Real-Time
Recurrent Learning. Details are provided in [6]. The constant activity, and hence constant error,
stored in the cells allows an LSTM network to retain information over indefinitely long periods of
time. We used networks having three blocks, each with a single input and output gate and two
cells. Full details are given in [3].

During training, networks were presented at each time step with a target (1 or 0) indicating the
language being presented. A sequence was judged to have been classified correctly if the average



output for the last 50 inputs (0.5 sec) was on the correct side of 0.5. After each training epoch,
weights were frozen and performance on the validation set measured. Weights were stored when
performance on the validation set was optimal (max 60 epochs), and performance was tested on
the independent test set. Finally, committees of 10 networks were presented with longer files of
unconstrained speech and network outputs were averaged. Averaging network outputs has the
effect of favoring more confident networks which exhibit more extreme outputs.

3. RESULTS
Ger Spa Jap Man
Eng | 52 (4) | 56 (5) | 50 (5) | 59 (5)
Ger | - 51 (3) | 55 (4) | 58 (3)
Spa | - - 59 (4) | 50 (3)
Jap | - - - 63 (3)

Table 1: Mean percent correct (s.d.) for each pairwise discrimination task, given only AEnv as
input.

Ger | Spa Jap Man
Eng | 52 | 62 [52] | 57 [55] | 58 [54]

Ger | - 51 58 65
Spa | - - 66 [58] | 47 [57]
Jap | - - - 60 [56]

Table 2: Mean percent correct for a committee of 10 trained networks on long samples of un-
constrained speech, given only AEnv as input. Best comparable results from [12] are given in
brackets.

Table 1 gives the mean percent correct for individual networks (n=10) trained on each pairwise
comparison using AEnv only as input, and tested on 10 second files of speech from novel speakers.
Table 2 gives performance of a committee of 10 such networks presented with long sound files of
unconstrained speech. The most comparable figures from [12] are also provided in brackets. These
are the best results obtained using their set of amplitude-based features alone. Overall performance
using this input variable is modest. The committee results obtained using LSTM are, in general,
somewhat better than those obtained in [12] using explicit features.

Ger Spa Jap Man
Eng | 56 (4) | 50 (2) | 63 (5) | 63 (3)
Ger | - 54 (3) | 69 (3) | 69 (4)
Spa | - - 60 (3) | 62 (4)
Jap | - - - 50 (2)

Table 3: Mean percent (s.d.) correct for each pairwise discrimination task, given only AF as input.

Tables 3 and 4 present similar results using AFy only as input. The best results from [12] are
those obtained using pitch-based features alone. Performance as a whole is rather better than



Ger | Spa Jap Man
Eng | 55 | 52 [62] | 62 [68] | 62 [75]

Ger | - 54 72 70
Spa |- |- 71 [71] | 63 [80]
Jap | - - - 44 [71]

Table 4: Mean percent correct for a committee of 10 trained networks on long samples of uncon-
strained speech, given only AFj as input. Best comparable results from [12] are given in brackets.

that obtained using AEnv. Mandarin and Japanese, in particular, are well differentiated from the
Indo-European languages, though not from one another. In this case, the explicit features of [12]
do a somewhat better job than LSTM.

4. DISCUSSION

These results are consistent with the literature which finds that prosodic variables can contribute,
though modestly, to automatic language discrimination. As in previous studies, we find Fy to be
a more effective discriminant variable than amplitude envelope modulation. However, the present
results suggest that envelope modulation may be more effectively exploited than heretofore.

The LSTM network employed here has so far been tested only on symbolic and artificial data.
Its performance on these difficult real-world data suggests that recurrent networks may indeed
have a role to play in the automatic identification of unknown features which are germane to a
given discrimination task. An immediate research goal is the development of means for discovering
the characteristics of the input which are exploited by the trained networks. This, in turn, may
contribute to linguistic efforts to identify language-specific prosodic features.

Much remains to be done. Neither extant systems, nor the present results, reflect the putative
importance of the role played by prosody in language identification by humans.
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