

ORRIL: A Simple Building Blocks Approach to Zoomable User Interfaces

Mike Bennett1,2

Media Lab Europe1
Sugar House Lane,
Bellevue, Dublin 8,

Ireland

Fred Cummins2,1

Dept. of Computer Science2
University College Dublin,

Belfield, Dublin 4,
Ireland

mikeb@medialabeurope.org fred.cummins@ucd.ie

Abstract
Zoomable User Interfaces (ZUI) can help people

perceive and interact with large collections of information.
These large collections complicate the task of creating
ZUIs. In this paper the ORRIL (Objects, Regions, Relations
and Interface Logic) framework is defined and presented
as a technique for aiding ZUI design and creation. ORRIL
makes explicit the data that appears in a zoomable
information space, while simultaneously emphasising the
relationships between user actions and transforms of the
data. This is important for modeling and clarifying the
processes that occur within a ZUI application. From the
perspective of an implementer it may be used as an
underlying model when designing and implementing a
framework for building ZUIs.

Keywords--- Zoomable Interfaces, multiscale

interfaces, information visualization, user interfaces,
interactive graphics, audio display.

1. Introduction

Zoomable User Interfaces (ZUI) are used [9][1] to
help users perceive and interact with large collections of
information. However, the process of creating ZUIs
remains a complex problem. The interplay between the
information in the zooming space, the changing semantic
content of the information based on scale and novel
interaction techniques result in making designing and
implementing ZUIs more challenging than for two-
dimensional interfaces.

An important aspect of constructing ZUIs is designing
for the display of information at user controllable levels of
detail, i.e. at different scales. This method of displaying
varying information based on scale in ZUIs is called

semantic zooming [12]. The choice of what information to
display is often dependent on the position of the user’s
viewport along the Z axis within the zoomable information
space [7][11] (Figure 1). This requirement means an
implementer may have to explicitly place many separate
but related versions of the information at varying scales
within the zoomable information space. Alternatively, or in
conjunction, an implementer could construct a generative
function that automatically produces an information
representation appropriate to the scale.

In this paper we introduce the ORRIL (Objects,
Regions, Relations and Interface Logic) framework as a
technique for aiding ZUI design and creation. ORRIL
makes explicit the data that appears in a zoomable
information space, while simultaneously emphasising the
relationships between user actions and transforms of the
data.

Section 2 covers a brief review of prior work. Ten
requirements are put forward as needed for constructing
ZUIs. Examples of the requirements are show in an
implemented ZUI. Section 3 introduces and defines

Figure 1. Three consecutive screen shots
captured when zooming in. As the distance
traveled along the Z axis increases the semantic
content of the displayed information increases.

ORRIL. The use of ORRIL is elaborated upon in three
examples. Section 4 shows how ORRIL fulfills the ten ZUI
construction requirements. Section 5 concludes and
discusses future directions.

2. Constructing ZUIs

2.1. Prior work

Research into the construction of ZUIs has primarily
focused in the areas of ZUI developer toolkits and novel
ZUI authoring tools.

Results of the work on developer toolkits include low-
level APIs and libraries such as Pad [12], Pad++ [5], Jazz
[4], SATIN [10], Tabula Rasa [6] and Piccolo [3]. Benefits
of the toolkit approach include a high degree of application
independence; and therefore greater flexibility in potential
end user interfaces. The key disadvantage is the
requirement for a firm knowledge of technical issues, e.g.
strong programming skills.

In the area of novel authoring tools MuSE [8] and the
related formalism of Space-Scale Diagrams [7] are
noteworthy. Space-Scale Diagrams are a visual technique
for understanding scale in ZUIs. MuSE uses Space-Scale
Diagrams as part of a domain independent prototype
authoring system for creating ZUIs. Other ZUI authoring
tools are often domain specific. Examples of these include
Tioga-2 [1], a database-centric visualization tool, and
Counterpoint [9], a tool for creating zoomable slide show
presentations. The advantage of these tools is they make
powerful visualization techniques available in a user-
friendly manner, i.e. little or no programming. The
disadvantage is often the domain specific nature of the
authoring tools.

2.2. Decomposing ZUI creation

The necessities for constructing ZUIs can be
decomposed into ten requirements. From these we
extrapolate out to a more general framework for ZUI
creation. The requirements identified by us are:

• R1: Render a display that a user can perceive and

interact with.

• R2: Place on the display at least one viewport into

a very large three-dimensional information space.

• R3: Allow movement of the viewport in the

information space so that it can pan and zoom.

• R4: Constrain the viewport such that is it
impossible to rotate it.

• R5: Position data, such as text, images and audio,

at specific spatial locations within the information
space.

• R6: Transform the data based on the viewport

position and other occurrences, e.g. user actions.

• R7: Create a mapping between which occurrences
trigger what transforms of the data.

• R8: Define areas within the information space

where the mappings exist, i.e. not all transforms
will be relevant to all locations or data.

• R9: Encode the nature of the transforms that occur

on data.

• R10: Enable transforms and mappings to be
altered.

2.3. An example of the Requirements

Media Dive (Figure 2) is a prototype ZUI application
we designed and implemented for browsing large
collections of audio, such as songs. The visual interface
(Figure 3) displays many images, each of which is
associated with a song. A user browses the songs by
panning and zooming. If a user zooms in to an image the
associated song will begin to play and if a user zooms out
the song will stop.

Looking at the Media Dive from the perspective of the
ten requirements we see there is a display (R1: Render)
with a viewport (R2: Place) into a very large information
space where images and songs are spatially organized (R5:
Position). The user can pan around and zoom (R3: Allow
and R4: Constrain) in to the images thereby triggering the
start of songs (R6: Transform and R7: Create). Zooming in
to a specific image triggers a particular song (R8: Define).
Triggering a song causes it to play or stop (R9: Encode),
e.g. read the audio data, process it and send it out on an
audio channel.

Note that Requirement 10 is not currently used in
Media Dive. However Media Dive could be extended so
that a user could reorganise the layout of the songs by

Figure 2. Overview of process and structure in
Media Dive.

direct manipulation. This would mean the mapping
between zooming in to a particular area in the information
space and what song is played would need to be altered
(R10: Enable) in response to the user’s actions.

2.4. Grouping the Requirements

Analysing the ten requirements enables further
classification of them into four broader and interdependent
groups (Table 1).

Group Requirements

Display R1: Render, R2: Place, R3:
Allow, R4: Constrain

Data R5: Position, R10: Enable

Interaction R7: Create, R8: Define

Results R6: Transform, R9: Encode

Table 1. The ZUI Requirement Groups.

Fulfilling the requirements within the Display Group
would result in a basic zoomable information space where
the fundamental ZUI operations of zooming and panning a
viewport are possible. Of course this would be useless if
there was no data within the display. Therefore the Data
Group in conjunction with the Display Group is required to
create a limited but usable ZUI application.

For more complex applications there is a need to
monitor user actions and respond to them accordingly. As

well as reacting to external occurrences, e.g. updating the
display to indicate a file has loaded. Partially realising this
need is possible with the Interaction Group, which would
enable the creation of a ZUI application that monitors but
does not respond to user actions and external occurrences.
A complete application necessitates also using the Results
Group to add and define interface and program behaviours.

Within a complete ZUI application the interplay
between the groups is, in a simplified form, that which is
shown in Figure 4. There is a display that enables
interaction, which often results in the transformation of the
data and that in turn causes display updates.

3. ORRIL

3.1. Defining ORRIL

ORRIL (Objects, Regions, Relations and Interface
Logic) is an abstraction of our approach to ZUIs into four
basic components (Figure 5). This abstraction is useful as a
framework for understanding ZUIs. From the perspective
of an implementer it may be used as an underlying model
when designing and implementing a framework for
building ZUIs. Alternatively it is useful for modeling and
clarifying the processes that occur within a ZUI
application.

The four ORRIL components are Objects, Regions,
Relations and Interface Logic. The definition of each is as
follows:

• Objects represent a basic perceptual unit within a

zoomable information space, e.g. an image, a
piece of audio or a block of text.

Figure 3. Media Dive interface showing thirty
six songs. Each image/dot represents a song
that may be zoomed towards to hear it playing.

Figure 4. Simplified interplay and flow of
dependencies between the Requirement Groups.

• Regions denote three-dimensional areas where
user actions may be captured, e.g. movement of a
viewport, continuous updates of a pointer’s
position, a key press, etc.

• Relations define the mappings and associations

between Regions, Objects and Interface Logic.

• Interface Logic represents transforms that can
occur.

Our focus with ORRIL was to make explicit the data

that appears in a zoomable information space, while
simultaneously emphasising the relationships between user
actions and transforms of the data.

This is beneficial because it helps reduce the
complexity associated with having many different
components for creating a ZUI. Reducing the number of
different types of components means users do not have to
keep track of numerous levels and layers of abstraction.
Clearly delimiting the role of each component enables
users to think about ZUI creation at varying levels of
complexity.

3.2. Three examples of using ORRIL

If a user wants to quickly create a ZUI, or is unfamiliar
with them, they could think only in terms of Objects. Each
Object could be associated with a single image. By placing
Objects within a zoomable information space they would
have control over where the images appear, thus creating a
basic ZUI application.

The following is a more complex example where all
four ORRIL components are used. In Section 2.3 Media
Dive was analysed from the perspective of the
Requirements - here it will be presented in the ORRIL
framework (Figure 6).

Media Dive requires that songs and images are placed
within a large zoomable information space. With ORRIL

this is done by associating each song and each image with
an Object. Each Object is then given a specific location
within the zoomable information space. If the viewport
displays an Object location then the Object’s image will be
displayed in the viewport.

When a Media Dive user zooms in to an image the
song associated with the image begins to play. This is done
by creating one Region for each image. Each Region is
given a location with the result that it is placed in front of
an image Object. When the viewport enters a Region a user
event occurs that eventually leads to the song starting.

The user event will lead to nothing if it is not linked

Figure 5. The ORRIL framework and the relationships between its components.

Figure 6. A snapshot of the ORRIL framework
applied to Media Dive.

with a transformative function, i.e. starting or stopping the
song. A Relation maps the user event to a transformative
function. The transformative function is encoded in the
Interface Logic.

A Region captures the user event. The user event is
mapped via a Relation to Interface Logic. The Interface
Logic is a function that acts upon a song Object. The
function acting on the song causes it to start playing. The
music stops when the same Region detects a user leave
event. The user leave event is mapped to a function for
stopping the music playing.

The final example (Figure 7) covers using ORRIL to
outline the process of semantic zooming. In this case
ORRIL is used to explain what occurs when zooming
towards a single image. As the zoom occurs the image
continuously gets bigger and the content of the image is
updated in discreet steps. Figure 7 shows four distinct
Regions in front of the image Object. When the user
controlled viewport enters Region 1 the image Object is
updated by the activated Interface Logic. Transitioning
from Region 1 to Region 2 causes another activation of the
Interface Logic, which again updates the image. This also
occurs when transitioning from Region 2 to Region 3, and
from Region 3 to Region 4.

4. From Requirements to ORRIL

Returning to the analysis at the end of Section 2 we
note that the four ZUI Requirement Groups do not map
directly to the four ORRIL components.

Instead ORRIL is built on the core assumption that the
Display Group is the default environment in which ZUIs
exist. This assumption means that the very large
information space, the display with a viewport and
zooming and panning (R1: Render to R4: Constrain) are
defaults that are not explicitly captured in ORRIL. That is
each component of ORRIL exists in the context of a
standard ZUI. In Figure 5 the Display Group can be
thought of as belonging to the ZUI Application.

ORRIL Requirements

Objects (1) R5: Position

Regions (2) R8: Define

Relations (3) R7: Create, <P> R10: Enable

Interface Logic
(4)

R6: Transform, R9: Encode,
<P> R10: Enable

Table 2. Mapping between ORRIL components and
the Requirements. <P> means the Requirement
following <P> is only partially met.

Table 2 shows how the ORRIL components relate to
and fulfill the remaining six Requirements. What follows is
an elaboration on how each ORRIL component contributes
to meeting the Requirements.

1. Objects related directly to R5: Position. There is a

partial relationship with the Data Group because
Objects do not meet R10: Enable, i.e. Objects can be
transformed but they cannot transform other ORRIL
components.

2. Regions meet the requirement of R8: Define. A partial

relationship exists between Regions and the Interaction
Group. The relationship is only partial because Regions
cannot be used to create new mappings between
ORRIL components, i.e. an ORRIL Relation needs to
be used as well.

3. Relations enable the creation of new ORRIL mappings

therefore they meet the R7: Create and partially meet
the R10: Enable Requirements. R10: Enable is partially
met because altering a Relation alters a mapping but
not a transform. The Interaction Group is now
completely fulfilled because Relations meet R7: Create
and Regions fulfill R8: Define.

4. Interface Logic directly meets the R6: Transform and

the R9: Encode Requirements, which also means it
fulfills the Results Group. The remaining unfulfilled
part of R10: Enable is met by Interface Logic because
transforms can alter transforms and mappings. This
completes the Data Group.

Therefore the four ORRIL components fulfill all the ZUI
creation Requirements that we specified in Section 2.

5. Conclusions and Future Directions

In this paper we have presented the ORRIL framework
as a technique for aiding ZUI design and creation. As part
of this we outlined ten requirements and the processes

Figure 7. Semantic zooming as outlined by
ORRIL.

needed when constructing ZUIs. In Section 2.3 we showed
where the Requirements occur in a prototype ZUI
application, i.e. Media Dive.

Based on the Requirements and Requirement Groups
we analysed ORRIL in Section 4. The results of this
indicate that ORRIL meets all the Requirements for a
suitable framework for specifying ZUIs.

In Section 3.2 the three examples of using ORRIL
imply that it is sufficiently expressive for describing a large
range of ZUIs.

Future directions for our work include evaluating
ORRIL by implementing it as part of an application for
rapidly prototyping high-fidelity [13] ZUIs. This work has
already begun and takes the form of a new tool called
Nutmeg.

Further work by the authors will include analysing
ORRIL in conjunction with Space-Scale Diagrams. This
will provide a means of evaluating ORRIL by doing a
contrastive analysis with a closely related but not
completely equivalent framework.

Acknowledgements

This research has been supported by Media Lab
Europe, University College Dublin, and the HEA (Higher
Education Authority) in Ireland.

References

[1] Aiken, A., Chen, J., Stonebraker, M., and Woodruff, A.
Tioga-2: A Direct Manipulation Database Visualization
Environment. Proc. of the 12th International Conference
on Data Engineering, 1996, p. 208-217.

[2] Bederson, B.B. PhotoMesa: A Zoomable Image Browser
Using Quantum Treemaps and Bubblemaps. Proc. of USIT
2001, ACM Symposium on User Interface Software and
Technology, p. 71-80.

[3] Bederson, B. B., Grosjean, J. and Meyer, J. Toolkit Design
for Interactive Structured Graphics. Tech Report HCIL-
2003-01, Computer Science Department, University of
Maryland, College Park, MD.

[4] Bederson, B. B., Meyer, J., and Good, L. Jazz: An
Extensible Zoomable User Interface Graphics ToolKit in
Java. Proc. of USIT 2000, ACM Symposium on User
Interface Software and Technology, CHI Letters 2(2): p.
171-180.

[5] Bederson, B. B., and Hollan, J. D. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics. Proc. of UIST'94, ACM Symposium on User
Interface Software and Technology, p. 17-26.

[6] Fox, D. Tabula Rasa: A Multi-scale User Interface System.
(1998) Doctoral dissertation, New York University, New
York, NY

[7] Furnas, G., and Bederson, B. B. Space-Scale Diagrams:
Understanding Multiscale Interfaces. Proc. of ACM CHI
1995, p234-241.

[8] Furnas, G., and Zhang, X. MuSE: A Multiscale Editor.
Proc. of USIT’98, ACM Symposium on User Interface
Software and Technology, p107-116

[9] Good, L., and Bederson, B. B. Zoomable User Interfaces as
a Medium for Slide Show Presentations. Information
Visualization 1(1) 2002, Palgrave Macmillan, p. 35-49.

[10] Hong, J., and Landay, J. SATIN: A Toolkit for Informal
Ink-based Applications. Proc. of USIT 2000, ACM
Symposium on User Interface Software and Technology,
CHI Letters 2(2): p. 63-72.

[11] Lieberman, H. A Multi-Scale, Multi-Layer, Translucent
Virtual Space. Proc. of the IEEE International Conference
on Information Visualization, London, September 1997.

[12] Perlin, K. and Fox, D. Pad: An alternative approach to the
computer interface. Proc. of the 20th Annual ACM
Conference on Computer Graphics, SIGGRAPH 1993, p.
57-64.

[13] Walker, M, Takayama, L., and Landay, J. High-Fidelity or
Low-Fidelity, Paper or Computer? Choosing Attributes
When Testing Web Prototypes. Group for User Interface
Research, Computer Science Division, University of
California, Berkeley.

