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Abstract. We compare and contrast two recent computational models of dopamine 
activity in the human central nervous system at the level of single cells. Both models 
implement reinforcement learning using the method of temporal differences. To address 
drawbacks with earlier models, both models employ internal models. The principal 
difference between the internal models lies in the degree to which they implement the 
properties of the environment. One employs a partially observable semi-Markov 
environment; the other uses a form of transition matrix in an iterative manner to 
generate the sum of future predictions. We show that the internal models employ 
fundamentally different assumptions and that the assumptions are problematic in each 
case. Both models lack specification regarding their biological implementation to 
different degrees. In addition, the model employing the partially observable semi-
Markov environment seems to have redundant features. In contrast, the alternate model 
appears to lack generalizability. 

Keywords: computational, dopamine, learning, model, reinforcement  

1. Introduction 

Reinforcement learning methods involving the Temporal Difference (TD) algorithm 
have been widely used to model the activity of dopamine neurons in animals 
undergoing various conditioning experiments (Wörgötter and Porr 2005). An element 
of reinforcement learning systems at times employed is a model of the environment  - 
this is something that mimics the behaviour of the environment (Sutton and Barto 
1998).  In this article, we examine two recent reinforcement learning models 
involving the TD algorithm that use internal models (Daw et al. 2006; Suri 2001). 
Both of these models have been applied to model the activity of dopamine neurons. A 
comparison is made to help analyze how these models differ and understand the 
features of internal models in these kinds of modeling exercises.   

2. Dopamine Function  

Dopamine neurons seem to play an important role in movement and behaviour in 
animals. The importance of dopamine in the function of motor control in humans is 
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seen from movement disorders such as Parkinson’s disease (Samii et al. 2004). The 
role of dopamine in behaviour is complex and is considered further below. As shown 
in Figure 1, dopamine neuron pathways are commonly divided into three main groups 
(although more complex accounts are also given such as in Haber et al. (2000)). The 
nigrostriatal pathway goes from the substantia nigra in the midbrain to the dorsal 
aspect of the striatum (Crossman and Neary 2000). The mesostriatal pathway extends 
from the ventral tegmental area of the midbrain to the ventral part of the striatum 
(Crossman and Neary 2000). A third pathway extends from the ventral tegmental area 
to the prefrontal area of the brain constituting the mesocortical pathway (Fuxe et al. 
1974; Kelley et al. 2005). The nigrostriatal pathway seems particularly important in 
movement (Samii et al. 2004) but the relationship between behaviour and individual 
pathways is complex (Schultz 1998).   

 
Figure 1. Outline of three main dopamine pathways in the human brain.  

The role of dopamine in behaviour has been investigated in animal studies using 
stimulus response paradigms. Dopamine seems to be important in how reward acts as 
reinforcement for these associations (Wise 2006). Animals pretreated with dopamine 
receptor antagonists require more time to learn to lever press for food in comparison 
with normal animals (Wise and Schwartz 1981). Furthermore, these effects seem 
unrelated to the role that dopamine receptor blockers may have on motor function 
(Wise 2006). However, although dopamine seems to have an important role in 
learning these associations, recent work on genetically engineered mice indicate that 
dopamine is not a necessary condition for learning to occur (Cannon and Palmiter 
2003).  

 A conceptualization of the role of dopamine in forming associations during 
classical conditioning experiments has been done using a reward prediction paradigm. 
According to this theory, a discrepancy is required between predicted and actual 
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reward for an animal to learn to associate a stimulus with a reward. This discrepancy 
is termed a reward prediction error (Waelti et al. 2001; Schultz 2000).  

 
Figure 2. Histogram of the activity of a dopamine neuron (above). Representation of the 
corresponding Temporal Difference  (! (t)) error signals (below) - these are the signals greater 
than baseline in the lower diagram. (Adapted with permission from Kakade and Dayan 2002)1. 
In this figure, the Temporal Difference (TD) error term is generated using reinforcement 
learning algorithm methods. The TD error term roughly corresponds to the reward prediction 
error term described in section 2.  In situation A (early learning) a dopamine neuron responds to 
the delivery of reward but not to the presentation of the stimulus that predicts reward. This is 
matched by the TD error signal (! (t)). After an animal learns to pair a stimulus with a reward, 
(situation B), a dopamine cell responds to the delivery of stimulus but not to the reward. This is 
again similar to the TD error signal (! (t)).  

This can be seen when pairing a stimulus (sound of a bell) with a reward such as 
food (Schultz 1998). In early training, the reward is not predicted by the stimulus so a 
reward prediction error occurs at the time of reward. After training, the reward is 
predicted by the stimulus – the animal  “knows” food will occur - hence no reward 
prediction signal occurs at the time of reward but instead occurs at the time of the 
stimulus. This reflects the fact that the stimulus acts as a reward prediction error 
signal for yet another earlier stimulus.  In addition, as detailed by Schultz (1998), the 
error signal is represented by transient increased dopamine activity in the dopamine 
pathways. As described later in this article, it has also been proposed that the reward 
prediction error term corresponds to a Temporal Difference error signal generated 
using a reinforcement learning computational algorithm (Montague et al. 1996). An 
outline of this is given in Figure 2. 

It should be noted that there are a number of other views about the role of 
dopamine. Wise (2006) argues that there are some theoretical difficulties with the 
experiments of Schultz such as the distinction between primary rewards and reward-
predictors. For example Wise argues that most food is not primarily rewarding. Wise 
(2006) takes a broader view of the role of dopamine suggesting that it “stamps in” 
associations between a stimulus and a reward. In contrast, Berridge and Robinson 
(1998) argue that roughly, the function of dopamine is to transform a stimulus from 
something that is liked into some thing that the animal wants – that is, something that 
the animal will work to acquire. Berridge and Robinson (1998) address the 
experimental finding (Young et al. 1993) that unpleasant events may increase the 
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levels of dopamine. A suggestion is made that in some circumstances, instead of 
dopamine production being linked to desirability the reverse may occur in which a 
negative valence is attached to a stimulus interpreted as threatening. As can be seen 
from these authors, there is a level of disagreement about the specific role of 
dopamine. This disagreement may account in part for divergence between the internal 
models as discussed below.  

3. Reinforcement Learning  

Reinforcement Learning methods form part of a larger group of methods that examine 
learning in computers in general (Russell and Norvig 1995; Mitchell 1997; Sutton and 
Barto 1998) such as supervised learning and unsupervised learning techniques. 
Supervised learning is characterized by using an external “teacher” to generate needed 
input output relationships which the network learns. Unsupervised learning depends 
on self-organization based on inputs alone. Reinforcement learning has been 
described as intermediate between these forms of learning (Dayan and Abbott 2001).  

The concepts of an agent and a state are important in the understanding of the 
principles of reinforcement learning. An agent here is regarded as something which 
learns to interact with the environment to achieve a goal (Sutton and Barto 1998). A 
state here is the representation that an agent gets of the environment’s state (Sutton 
and Barto 1998). This is a flexible approach and allows the state to be determined in 
different ways. For example the state could be made up of direct sensations received 
by the agent or alternatively by the memory of past sensations. In addition to these 
concepts, Sutton and Barto (1998) describe four main components to a Reinforcement 
Learning system (Sutton and Barto 1998).  

 
• A policy defines the way an agent behaves at a particular time. Roughly, this 

can be understood as a mapping from the perceived state of an agent to an 
action to be taken in those states. 

• The reward function gives a definition of what are good and bad events for 
an agent. In a biological system, reward as a good event could be pleasure 
and a bad event could be pain. The agent is unable to alter the reward 
function but can use it as the basis for generating its policy. 

• The third component is the value function: it describes what is good for an 
agent over a sustained period of time.  Roughly speaking, this represents the 
cumulative reward that an agent can expect starting from a state. 

• The final element is the use of a model of the environment. This is 
sometimes called an internal model. This occurs only in some reinforcement 
systems. A model is anything that an agent can use to predict how the 
environment will respond to its actions. So a model of an environment needs 
to have significant predictive capabilities.    

 
The value function is a kind of prediction from a state. The notation V(st) stands 

for the estimate of the expected return (value function) for state s at time t (this is 
understood to be following some policy). So, given a non-terminal state s at time t, a 
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method needs to be developed to estimate the value of it, i.e. estimate V(st).  One way 
of doing this is by waiting until the agent reaches some defined terminal state and 
then examining how useful st was in reaching the terminal state. This can be done 
repeatedly to get an accurate value for V(st) A different approach is to update the 
value function at the following time step rather than waiting until the terminal state 
has been reached. At the following time step, the agent will have a value estimate for 
that time-step and the environment will provide the reward. This allows successive 
predictions to be compared. The discrepancy forms the TD error signal. 

This can be summarized in the following equation (Sutton and Barto 1998). 
 

V (st)  V (s! t) +  [r" t+1 + V (s# t+1) – V (st)]  (1) 

  
In this equation V (st) represents the value of the state at time t, V (st+1) represents 

the value of the state at time t+1 and rt+1 is the reward at time t+1. The expression [rt+1 
+ V (s# t+1) – V (st)] – the TD error signal (often termed $t) - is used to update the value 
function.  represents a constant step size parameter to allow gradual updating.  " #
represents a discount factor which is used to indicate that later rewards are worth less 
than earlier rewards. Thus the equation for $t can be written 
 

$t = [rt+1 + V (s# t+1) – V (st)]  (2) 

This allows equation (1) to be written as  

V (st)  V (s! t) +  [" $t]  (3) 

Roughly, these equations are implemented as follows. At the start, values are 
assigned in an arbitrary manner giving a baseline (V(s)) for all the states. Starting 
with a state at time t (st) an action is taken leading to the state at the                                                                                            
next time step (st+1). The environment will provide the reward rt+1 at that time step. 
This could be equal to zero if no reward occurs. As values have been assigned to all 
states at the outset, so V(st), V(st+1) will have been generated in addition to rt+1 
generated by the environment. This allows V(st) (the value of a state at time t) to be 
updated at this time step using equation (3) rather than having to wait until the 
terminal state. The process is repeated at each time step until the terminal state is 
reached indicating the completion of that episode. An episode here is any sort of 
repeated interaction with the environment ending in a terminal state. Once that state is 
reached there is a return to a starting state. An episode could be for example a trip 
through a maze. Episodes are repeated until some defined condition is fulfilled such 
as for example the identification of a particular route through a maze.    

Although value functions generated using the TD algorithm has some predictive 
qualities a distinction can be drawn between them and models of the environment. A 
value function can be used to generate the sum of future rewards given a state. 
However, given a state and an action, a model of the environment allows the 
generation of the next state and reward. Thus a model of the environment provides a 
richer form of prediction in comparison to a value function. The advantage of these 
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models is that they can be used to extend the TD algorithm thereby improving the 
performance of systems in certain situations (Suri 2002).  

  

4. Modeling of Dopamine Activity Using Reinforcement Learning Methods  

As described earlier, various experiments (Schultz 1998) have shown that the activity 
of dopamine neurons changes while an animal learns to associate a stimulus with a 
reward. This form of activity has been modeled using Reinforcement Learning 
methods – described in (Schultz et al 1997; Daw 2003; Suri 2002; Joel et al. 2002). 
There are a number of variations in these models but some of the core ideas are as 
follows. 
 

1. The Reinforcement Learning methods often use TD learning methods. 
2. The TD error signal represents the reward prediction error signal, so the TD 

error is also reflected by the transient increased dopamine activity (see 
Figure 2). 

3. The models have a means of representing the stimulus at the time of the 
reward.    

4. The environment is Markovian: roughly this means that the current state 
retains all relevant information from previous states and that future states and 
associated relevant information such as rewards can be estimated from the 
current state (Sutton and Barto 1998; Montague et al. 1996).  

5. Other components of the model have biological correlates.   
 

A number of such models are discussed by (Joel et al. 2002). They note that a 
weakness of these models is that the biological implementation of these models often 
does not correlate with known anatomy and physiology.  

4.1 Model by Suri (2001)  

Further developments have been made to improve the correspondence of the TD error 
signal with the dopamine activity in biological experiments. Suri (2001) describes the 
activity pattern of dopamine neurons in animals undergoing the sensory 
preconditioning paradigm. In this kind of experiment, an animal undergoes a phase of 
training where a neutral stimulus A precedes a neutral stimulus B. In the second 
phase, the animal learns to associate stimulus B with a reward. In the third phase 
stimulus A is presented alone. The response of the animal to stimulus A in the third 
phase is similar to the response to the reward. This seems to indicate that given 
stimulus A, the reward is predicted – though A has never been explicitly paired with 
the reward. The animal seems to have learned that stimulus A is followed by stimulus 
B and the same Stimulus B then precedes a reward. Suri (2001) notes how this has 
been shown to be reflected by changes in dopamine concentration (Young et al. 
1998).  
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As previous Reinforcement Learning methods using the TD error term failed to 
describe this activity accurately, Suri (2001) gives a description of a new model 
drawing from (Sutton and Pinette 1985) to achieve this task.  The main difference 
between it and previous models is that the prediction of future events is generated in a 
different way.  Previous models such as (Montague et al. 1996), used an estimate of 
future rewards by a value function such as 

 

V (x (t))  = x (t). w (t)  (4) 

  
Where V (x (t)) is a scalar estimate of future rewards, x (t) is a vector representing 

the stimulus at time t and w (t) is a vector representing the weights of a neural 
network. The weights of the neural network are altered by the TD error to give a more 
accurate value for the value function during learning. 

In the model by Suri (2001) a prediction signal p(t+1) is estimated. This represents 
the discounted sum of future events (rewards and stimuli), a concept broader than the 
value function. It is estimated using equation 
  

 p(t+1) = x (t+1) + Wx (t+1)  + W2x (t+1)  (5) 

 
In this formulation, a number of different events are represented in an event vector. 

For example, if the presence of an event is represented as 1 and the absence 
represented as 0 then the event vector  [0 1 0] represents the presence of one event 
and the absence of two other events. In Suri’s model, each event in an event vector is 
transformed into a fixed temporal pattern over some time period which is called a 
temporal event representation. x(t+1) is the temporal representation of the events at 
time t+1 and x(t+2) is the temporal representation of the events at time t+2. In this 
theory, W represents the weight matrix of a neural network - a form of transition 
matrix of a Markov process. W has the property 

 

W(x (t))  " #x (t+1) . (6) 

 
W can be seen to be a fraction (by discounting factor #) of a transition matrix of a 

Markov process. As described by Sutton and Pinette (1985), the use of this kind of 
weight matrix is needed to allow a system to converge. In this model by Suri, given 
the temporal representation of events at time t+1, the weight matrix W can be used to 
calculate the temporal representation of the events at the next time step t+2. Using W 
recursively allows the calculation of the temporal representation of events after 2 time 
steps. Both of these calculations include the discount factor #. In theory, the matrix W 
could be used to generate calculation of the temporal representation of events at even 
later time steps.  However, temporal representations of events beyond two time steps 
are less important because of the discounting factor #. In equation  (5) the temporal 
representation of the events at time t+1 is indicated by term x(t+1), the temporal 
representation of the events at time t+2 is indicated by Wx(t+1) and likewise the 
temporal representation of the events at time t+3 is indicated by W2x(t+1). Suri 
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(2001) argues that the summation of these temporal representations of events as in 
equation (5), calculated using the matrix W, generates an estimate of p(t+1) - the sum 
of future events from time-step t+1. This allows an estimation of what events will 
happen in the future. The network learns the matrix W by using TD error techniques. 
By being able to predict the sum of future events through the use of W, it can be seen 
that W is involved in the generation of a model of the environment.  In comparison, 
other models (as in the model of (Montague et al. 1996) mentioned above) use a 
matrix w(t) which generates the sum of future rewards at each time step. This is just 
an idea of how good or bad things will turn out from that time step; it does not have 
the richness of a prediction in comparison to p(t+1) generated using W.  

The advantage of this model is that enhanced predictions are made. Thus the 
system is better able to detect when a prediction fails to occur. As a result it has an 
improved ability to detect prediction errors in comparison to using a value function. 
The prediction errors are used to update the matrix W (as above) using the TD 
algorithm. The prediction errors are more comprehensive than that achieved using a 
value function and so correlate more closely to the activity of dopamine neurons. The 
closer correlation to the activity of dopamine neuron activity seems to be achieved 
largely by the use of a model of the environment.  

The biological implementation of this model is briefly outlined by Suri (2001). The 
prediction signal may be generated by cortical neurons. It is suggested that the 
formation of the associations occurs within the hippocampal area. The TD error 
signals - as outlined above - are reflected by dopamine cell activity. A time step of the 
model is related to the theta cycle of the hippocampus.  

4.2 Model by Daw et al. (2006)  

Daw et al. (2006, 2003) developed a model to address another situation where the 
previous models produced incorrect correlations between dopamine activity and the 
TD error of the Reinforcement Learning methods. This is the case (Hollerman and 
Schultz 1998) where animals were trained to expect a constant stimulus-reward 
interval which was later varied – as when a reward is given earlier than expected. For 
example, the model by (Montague et al. 1996) predicted that at the earlier than 
expected presentation, a positive error (representing increased dopamine activity) 
should occur. However, this model also predicted that there should be a further 
episode of negative error (decreased dopamine activity) at the originally expected 
time of delivery as shown in Figure 3. This model only partially corresponds to the 
activity of dopamine neurons. From experimental data it has been shown (Hollerman 
and Schultz 1998) that there is an increase in the dopamine activity at the earlier time 
but there is not a decrease at the original time of reward as can be seen in Figure 4. 

Daw et al. (2006), argue that this error arises because of the way earlier models 
assume the environment is Markovian. Roughly, in these accounts it is assumed that a 
state retains all relevant information from previous states and that future states and 
associated relevant information such as rewards can be estimated (Sutton and Barto 
1998; Montague et al. 1996). There are situations where this does not appear the case 
such as in trace conditioning experiments. For simplicity, view a trace conditioning 
experiment as learning to pair a stimulus with a reward with a time gap between the 
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offset of the stimulus and the onset of reward. After learning, a stimulus predicts a 
reward after a delay of a few seconds. Assume that the state is an animal’s immediate 
sensory observation (Daw, 2003). Note that in this kind of experiment, what is 
observable immediately before the reward is much the same as that observable after 
the reward. The state is the same in both situations but clearly the chance of receiving 
a reward is not. In this case, ostensibly there are two states (as estimated from the 
observations) that are the same but they have different future outcomes so violating 
the Markov property (Daw, 2003). 
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 Figure 3. Figure based on the computational model in (Montague et al. 1996). Representation 
of TD error when reward delivered earlier than expected. Positive TD error occurs at time of 
stimulus (t1). Positive TD error occurs at time of earlier reward (t2). Negative TD error at time 
of originally expected reward (t3). 

In addition, the use of a Markovian environment has certain drawbacks where there 
is variability in the timing between stimuli and rewards in trace conditioning 
experiments. Daw et al. (2006) suggest that in these circumstances it may be useful to 
consider the environment as having a semi-Markov property. The key difference 
between this model and a Markov model is that state transitions can occur at irregular 
time intervals in the semi-Markov model (Daw 2003). In contrast, the Markov model 
requires that the intervals between state transitions remain the same. Using the semi-
Markov model of the environment allows a trace conditioning experiment to be 
represented as two states: one state corresponding to the interval between stimulus 
and reward (called interstimulus interval (ISI)), the other state corresponding to the 
interval between reward and stimulus (called intertrial interval  (ITI)). According to 
this model an external event signals a transition from one state to another. Hence 
when an agent is in the ISI state and a reward occurs then a transition to ITI state 
occurs. This means that the situation in Figure 3 could not occur. Once the reward is 
delivered in these circumstances, the agent is in the ITI state and so no longer expects 
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a reward hence there is no error term at the usual time of reward. So the semi-Markov 
model allows better representation of experiments with variability in timing. 

Time

do
pa

m
in

e 
ac

tiv
ity

t3 usual time
 of  rewardt1 stimulus

t2 reward 
delivered early

 

Figure 4. Figure based on the neurophysiological experiments of (Hollerman and Schultz 
1998). Representation of dopamine activity when reward delivered earlier than usual. There is 
increased dopamine activity at time of stimulus (t1). There is increased dopamine activity at 
time of reward (t2) when reward delivered earlier than expected. No altered dopamine activity 
at time of originally expected reward (t3). 

Just using a semi-Markov model presents difficulties when expected rewards fail to 
occur. In this case there would be no signal that a transition from ISI to ITI has 
occurred. So the agent would remain in the ISI state.  To overcome this case as well 
as addressing theoretical issues involving the concept of state, as outlined earlier, 
Daw et al. (2006) propose an environment modeled using a partially–observable 
Markov model. This means that the state is not an agent’s immediate sensory 
observation but rather that the observation received by the agent is related by a 
probability function to the underlying state. There are a number of inference 
components to this model. One of these inference components is a belief state !s,t : the 
agent tries to figure out the probability that it left state s at a given time t given its 
observations to that point. For example, if the value for the belief state is high then it 
is likely that a transition from a state has occurred. This can be used to bias the error 
term used for learning. So if !s,t is low then less weight is given to the error term used 
for learning, whereas if !s,t is high then more weight is given to the error term. In 
addition, other inferences such as the dwell time in a state are computed in the model. 
These processes can be used to explain the situation when a reward is omitted. In this 
case, the agent is in an ISI state awaiting a reward. As the interval following a 
stimulus lengthens the state inference mechanisms gradually decide that a state 
transition has taken place and that now the animal is in an ITI state. If the reward does 
occur later this further convinces the agent that the transition has occurred and that it 
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is now in the ITI state. Thus the partially observable semi-Markov model enables 
more accurate representation when a reward is omitted than just using the semi-
Markov model alone (see Figure 5). 
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Figure 5. Figure based on the computational model of Daw et al. (2003). This is a 
representation of an error term when reward is omitted at the usual time and presented at a later 
time. A positive  error term occurs at time of stimulus (t1). There is a negative error term at the 
time of the omitted reward (t3) and a positive error term at the time of the later arriving reward 
(t4). In the case where a semi-Markov model without partial observability is used, then the 
agent would continue to expect the occurrence of a reward indefinitely. So the agent would 
remain in the interstimulus interval (ISI) state and would not transition to the intertrial interval 
(ITI) state. 

In this account it seems that the inference system for the partial observability 
aspect of the system makes up the internal model in the system. For example, this is 
the part of the system that is able to figure out whether a transition has occurred given 
the information to that point. This is more complex kind of prediction than the sum of 
future rewards for a state provided by using the TD algorithm. The advantage of this 
approach it can be used to model a number of different experiments. In comparison 
earlier models such as (Montague et al. 1996) that do not use the partially observable 
Markov model can only be applied to a narrower range of experiments so lacking a 
capacity to generalize. 

It is argued by Daw et al. that their model requires a cortical perceptual system to 
construct the inferences as required by the partially observable Markov aspect of the 
model. Daw et al. assume that the animal has learned the mechanisms for making 
inferences. Although the model of Daw et al. predicts the activity of dopamine 
neurons more accurately, the biological correlates are not outlined in detail. A 
suggestion is made that the inferences system may be located in the sensory cortex 
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which is then received by the dopamine system. Dopamine activity is correlated with 
the TD error term in the part of the model employing this algorithm.   
 

5. Comparison of Models by Daw et al. and Suri  

The internal models of Daw et al. (2006) and Suri (2001) contrast in a number of 
ways. These differences are summarized in Table 1. The generation of the internal 
model involves fundamentally different assumptions. In the system of Daw et al., a 
partially observable semi-Markov environment is assumed thus inferences need to be 
generated and used for this model. In Suri’s account a process of iteration using a 
weight matrix generates an estimation of the prediction of the sum of future events. 
The role of the internal models is different in these two systems. In the account of 
Daw et al., it is the inference system for the partial observability aspect of the system 
that seems to constitute the internal model. For the rest of this article, the view will be 
taken that the system of Daw et al. constitutes all the components of the model 
whereas the internal model corresponds to the inference component of the system.  In 
Suri’s account the weight matrix forms the key component in the generation of the 
model of the environment. 

One of the main deficiencies in modeling using reinforcement learning methods is 
that the biological implementation is often not fully specified (Joel et al. 2002). This 
seems particularly apparent in the more complex approaches using internal models. 
Owing to their different implementation of internal models, this manifests itself in 
different ways in the two accounts. A key requirement in the generation of a model of 
the environment in Suri’s account is the use of a weight matrix. This seems less 
complex to implement biologically than Daw et al.’s internal model and so a 
reasonable attempt is made by Suri to identify biological correlates of the components 
of the model. However, a difficulty with this account is that it is not clear whether 
there are appropriate anatomical pathways between the structures for the computation 
to take place as required for the internal model to function. Without this specification, 
it is difficult to judge whether the biological structures could operate with one another 
in a plausible integrated manner. So by Suri’s account, although biological structures 
are identified to correlate with features of the model, it is unclear if the model as a 
whole can operate in a biologically plausible manner. For the internal model of Daw 
et al., inference states needs to be generated by a number of different functions. 
Owing to the complexity of the model it is difficult to relate it to biological structures 
so only a sparse account of the biological implementation can be given (Daw 2003; 
Daw et al. 2003; Daw et al 2006). This results in reservations about the biological 
feasibility of the model.   

In the system (all components of the model) of Daw et al., the issue of redundancy 
is acknowledged by the authors. In this system, predictions are generated both by the 
functions required to generate inferences using the internal model and less broadly, by 
means of a value function generated using TD methods. In theory, predictions could 
be made solely by the functions used in the internal model. This seems to indicate that 
the TD error aspect in their system is not required. As one of the main goals of this 
type of modeling is to capture the manner in which dopamine neuron activity is 
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paralleled by variation in the TD error signal, this finding seems to undermine the 
goal of understanding the function of dopamine activity.    

Suri’s model doesn’t appear to have the difficulty with redundancy as only one 
form of prediction is made (the sum of future events – p(t+1)). However, Suri admits 
that his model cannot be used for modeling of certain experiments. Thus it lacks an 
ability to generalize to different kinds of experiments. Bearing in mind that 
approaches without the use of an internal model have modeled a number of different 
experiments, this lack of generalizability in Suri’s account may suggest his account of 
an internal model may not be required to model neurophysiological experiments. 

Daw et al. (2005) offer a suggestion to address the redundancy issue which also 
may help with the problem about lack of generalizability. An argument is made that 
there are two distinct neural systems involved in prediction. One system employs a 
model-based approach and is situated in the prefrontal cortex. The other system 
employs a model free approach and is situated in the dorsolateral striatum. Depending 
on the cognitive task involved, a system of arbitration is employed to use the more 
appropriate model. By this account, an internal model is required only in certain tasks 
and that model free approaches are sufficient in other tasks. The choice between them 
is made in terms of demands made by different systems in terms of memory and time. 
In the system of Daw et al. (2006), the inference model would constitute the internal 
model and value function using the TD error would make up the model free approach. 
The account by Suri provides the framework for the internal model. So the 
redundancy issue is addressed because though there are two systems each is utilized 
differently. The lack of generalizability is addressed as it is not a requirement that all 
experiments need to be modeled by the approaches using the internal model. 

The suggestion outlined in (Daw et al. 2005), helps resolve some of the issues 
about the use of the internal models. However it does not address the difficulty about 
the lack of biological implementation of these models. Indeed the solution in (Daw et 
al. 2005) requires a further system of arbitration thus increasing the complexity of the 
system and increasing the difficulty of biological implementation of the model.  

The models differ in their account of how the models are taught. Suri outlines that 
the TD learning rule is implemented to teach the system a weight matrix that is used 
to generate a model of the environment. The prediction error in the TD algorithm is 
related to dopamine neuron activity in this account giving an indication of the 
biological structures involved in teaching the model of the environment. In 
comparison, Daw et al. (2006) do not outline how the model is taught. It would be of 
interest to see whether the inference component of their model could be taught using a 
TD algorithm. This could give an indication of whether a biological structure such as 
the dopamine neurons could be involved in teaching the model of the environment. 

It seems that both of these models are involved in generating broader predictions 
than would be the case were the TD algorithm employed alone – this has implications 
about the nature of dopamine neuron activity assumed in each model. By Suri’s 
account, the use of the model of the environment allows the prediction of the sum of 
future events. This includes neutral stimuli as well as rewards. This may mean that 
dopamine is implicated in the process of prediction in a broader sense rather than only 
the prediction of reward related information. This is an area under discussion as 
investigators differ in their view about the role of dopamine in reward. Some 
emphasize the role of dopamine in reward (Wise 2006) whereas other authors 
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question this view because of the potential role of dopamine in unpleasant stimuli 
such as footshock (Salamone et al. 2005; Young et al. 1993). The former view may 
suggest a narrower view of the role of dopamine in prediction whereas the latter 
accounts may suggest a broader role for dopamine in prediction. Suri’s internal model 
seems more compatible with this latter view.  

In comparison Daw et al. (2006, p.1667) suggest that according to their view the 
TD system receives a “refined, inferred sensory representation from cortex”. This 
seems to suggest that the internal model (inference component of their system) is able 
to generate predictive information, so the TD system may have a reduced role in 
prediction. This may mean that the dopamine system may not need to have as 
important a role in prediction compared to Suri’s model. Thus the model of Daw et al. 
could be consistent with a greater number of theoretical views of the dopamine 
system in comparison with Suri’s account. This may also help to explain why this 
system seems to be more generalizable compared to the model of Suri. 

The two accounts also differ regarding the proofs of their accounts. A proof of the 
model of Daw et al. is provided in the appendix of their paper (Daw et al. 2006). In 
contrast, Suri is unable to offer a convergence proof for his model. In addition, he 
notes for some simulations altering parameters prevented convergence during the 
simulation. Thus the model of Daw et al. may have a more robust theoretical 
framework. 
 
Table 1. Comparison of the internal models of Daw et al. (2006) and Suri (2001).   

   
 Daw et al. Suri 
Learning of model not specified TD algorithm utilized 
Information generated inference of a state prediction of the sum of future 

events 
Biological 
implementation 

suggestion of how could 
be implemented 

brief outline 

Generalizability applicable to a number of 
different experiments 

doesn’t apply to experiment when 
reward delivered earlier than 
expected 

Proof for model proof sketched unable to provide convergence 
proof 

 

6. Conclusion  

The comparison of the internal models of Daw et al. and Suri has indicated how they 
differ in a number of features. The identification of some of the important features 
that occur in this kind of modeling seems to be one useful outcome of the comparison. 
These particular models are interesting to contrast as they take two clearly different 
approaches. Suri attempts to use a fairly tightly integrated model that seems 
biologically plausible but has the drawback that it does not generalize to a wide 
number of experiments. Daw et al. take a more abstract approach involving a more 
complex system. The internal model forms a component of the larger system. The 
approach allows the system to be compatible with a larger number of experiments but 
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it is more difficult to relate this model to biological structures. These models suggest 
a tension between increasing the theoretical strength of a model with the practical 
issue of how it is implemented. Suri’s model may be more practical but it is unable to 
cope with some of the theoretical implications raised in the experiments. The model 
of Daw et al. in contrast addresses the theoretical concerns more closely and has more 
complexity in the system to deal with these issues. However this results in greater 
difficulty in applying this to neural structures. Addressing this tension would seem a 
critical concern in future modeling with these kinds of techniques. 

Notes 

1. Reprinted from Neural Networks, 15, Kakade, S. & Dayan, P., Dopamine:         
generalization and bonuses, 550 (2002), with permission from Elsevier. Part of diagram 
originally appeared in Journal of Neurophysiology, 72, Mirenowicz, J. & Schultz, W., 
Importance of unpredictability for reward responses in primate dopamine neurons, 1026 
(1994). This is used with permission from The American Physiological Society. Another 
part of diagram is originally  from Science, 275, Schultz ,W., Dayan, P. & Montague, 
P.R., A neural substrate of prediction and reward 1594  (1997), Reprinted with 
permission from AAAS. 
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